
Moise specifications

— draft —

Jomi F. Hübner

November 12, 2013

Abstract

This document presents Moise specifications for (i) the organisational
model (OS, OE), and (ii) the semantics in terms of translation to NOPL.
The focus is on the formalisation, no motivations, examples, or detailed
explanations are thus provided (these aspects are considered in the papers
listed in the end of this document).

The current implementation of Moise (release 0.7) is considered in
this document and not the variants/experiments/extensions published in
some papers.

1

Contents

1 Organisation Model 3

1.1 Organisational Specification . 3

1.1.1 Structural Specification 3

1.1.2 Functional Specification 6

1.1.3 Normative Specification 7

1.2 Organisation Entity . 8

2 OML Semantics 9

2.1 NOPL for OS . 10

2.2 NOPL for Groups . 11

2.2.1 Facts . 11

2.2.2 Rules . 12

2.2.3 Norms . 13

2.3 NOPL for Schemes . 14

2.3.1 Facts . 15

2.3.2 Rules . 16

2.3.3 Norms . 16

2.4 Organisational Actions . 18

2.4.1 Role adoption . 18

2.4.2 Leave role . 18

2.4.3 Add responsible group . 19

2.4.4 Commit to mission . 19

2.4.5 Leave mission . 20

2.4.6 Goal achievement . 20

A Writing Paper example 21

A.1 Structural Specification . 21

A.2 Functional Specification . 21

A.3 Normative Specification . 22

A.4 NOPL program . 22

2

1 Organisation Model

TheMoise organisation model started on paper [Hannoun, 2002] and then was
extended in [Hübner et al., 2002] and [Gâteau et al., 2005]. This section is thus
based on these papers. Although, as stated in the abstract, this document
considers the implemented version of the model, as available in http://moise.

sourceforge.net.

Sets, relations, and functions are used to define the elements that compose the
organisational model of Moise. The informal meaning of these elements are
presented in the papers cited above. The formal meaning is defined in Sec. 2.

TODO: use Z notation

1.1 Organisational Specification

Definition 1 (Organisational Specification). An Organisational Specification
(OS) is defined by its three dimensions: structural, functional, and normative.

〈id, SS, FS,NS〉

where

• id is a unique identification of the OS;

• SS : SS is a structural specification (SS is the set of all SSs and the type
of SS);

• FS : FS is a functional specification (FS is the set of all FSs); and

• NS is a set of norms.

1.1.1 Structural Specification

Definition 2 (Structural Specification). A Structural Specification (SS) is de-
fined by the elements of the following tuple:

〈R,<, rg,L〉

where

• R is a set of identifiers of roles of the organisation;

• < : R×R is an inheritance relation among roles;1

1ρ < q means q is a sub-role of ρ or ρ is a super-role of q.

3

http://moise.sourceforge.net
http://moise.sourceforge.net

• rg : GS is the specification of the root group of the organisation (GS is
the set of all group specifications and the type of rg);

• L is a set of links between roles in the scope of the group being defined.

Inheritance properties:

• Anti-symmetric
ρ < ρ′ ∧ ρ′ < ρ⇒ ρ = ρ′ (1)

• Transitivity
ρ < ρ′ ∧ ρ′ < ρ′′ ⇒ ρ < ρ′′ (2)

• Role hierarchy root (ρsoc)

ρsoc ∈ R (3)

∀ρ ∈ (R\{ρsoc}) | ρsoc < ρ (4)

@ρ ∈ R | ρ < ρsoc (5)

Definition 3 (Link). A link is defined by a tuple:

〈s, t, k, p〉

where

• s : R is the role source of the link;

• t : R is the role target of the link;

• k : {acq, com, auth} is the type the link (acquaintance, communication, or
authority).

• p : {intra, inter} is the scope of the link (inter-group or intra-group).

Reads: an agent playing the role s has the link of type k to agents playing role
t in scope p.

Properties:

• Authority implies communication

〈s, t, auth, p〉 ⇒ 〈s, t, com, p〉 (6)

• Communication implies acquaintance

〈s, t, com, p〉 ⇒ 〈s, t, acq, p〉 (7)

4

• Inheritance (all links defined for a role is inherited by its sub-roles)

〈s, t, k, p〉 ∈ L ∧ s < s′ ⇒ 〈s′, t, k, p〉 ∈ L (8)

〈s, t, k, p〉 ∈ L ∧ t < t′ ⇒ 〈s, t′, k, p〉 ∈ L (9)

The scope intra means that the link is valid only inside a group instance: an
agent playing the role s in an instance group g has the link to agents playing
the role t in the same group g. The scope inter means that the link exists only
for different group instances: an agent playing the role s in an instance group g
has the link to agents playing the role t in the another group g′, where g 6= g′.
In the case where both scopes are defined, the link exists despite the instances
of the groups.

Definition 4 (Group Specification). A Group Specification (GS) is defined by
the elements of the following tuple:

〈id, compat,maxrp,minrp,maxsg,minsg〉

where

• id is a unique identification of the GS;

• compat : R → 2R is a function that maps each role to the set of its
compatible roles;

• maxrp : R → Z: is a function that maps each role to the maximum num-
ber of players of that role in the group (upper bound of role cardinality);2

• minrp : R → Z: is a function that maps each role to the minimum number
of players of that role necessary for the group to be considered well-formed
(lower bound of role cardinality);

• maxsg : GS → Z: is a function that defines the maximum number of
subgroups of the group (upper bound of subgroup cardinality);3

• minsg : GS → Z: is a function that defines the minimum number of
subgroups of the group (lower bound of subgroup cardinality).

Compatibility properties:

• Reflexivity
ρ ∈ compat(ρ) (10)

• Transitivity

ρ ∈ compat(ρ′) ∧ ρ′ ∈ compat(ρ′′)⇒ ρ ∈ compat(ρ′′) (11)

2If role ρ is not allowed in the group, we have maxrp(ρ) = 0.
3If group gs is not allowed as a subgroup, we have maxsg(gs) = 0.

5

• Inheritance (all compatibilities defined for a role is inherited by its sub-
roles)

ρa ∈ compat(ρb) ∧ ρa 6= ρb ∧ ρa < ρ′ ⇒ ρ′ ∈ compat(ρb) (12)

ρa ∈ compat(ρb) ∧ ρa 6= ρb ∧ ρb < ρ′ ⇒ ρb ∈ compat(ρ′) (13)

We denote the sets and functions of a group specification by maxrpGS ,
compatGS , etc.

The function compatGS contains the compatibilities defined in the scope of
instances of groups created based on the specification GS: an agent already
playing roles ρi in a group instance g is allowed to adopt in g only roles in
compatGS(ρi).

TODO: add scope inter-group for compat: put it in SS instead of GS

1.1.2 Functional Specification

Definition 5 (Functional Specification). A Functional Specification (FS) is
defined by the elements of the following tuple:

〈M,G,S〉

where

• M is a set of identifiers of missions of the organisation;

• G is a set of identifiers of goals of the organisation;

• S is the set of scheme specifications of the organisation.

Definition 6 (Scheme Specification). A Scheme Specification (S) is defined by
the elements of the following tuple:

〈id,maxmp,minmp, gr〉

where

• id is a unique identification of the scheme;

• maxmp :M→ Z: is a function that maps each mission to the maximum
number of commitments of that mission in the scheme (upper bound of
mission cardinality). If maxmp(·) = 0, the mission is not permitted in the
scheme;

• minmp :M→ Z: is a function that maps each mission to the minimum
number of commitments of that mission necessary for the scheme to be
considered well-formed (lower bound of mission cardinality);

6

• gr : G is the root-goal of the scheme.

TODO: add preference among missions

Definition 7 (Goal). A goal is defined by the elements of the following tuple:

〈id, gm, type, card, ttf, p〉

where

• id is a unique identification of the goal;

• gm : 2M is the set of missions that include the goal;

• type : {ach,maint} is the type of the goal (either achievement or mainte-
nance);

• card : Z is the cardinality of the goal – how many agents have to achieve
the goal for the goal to be considered as globally satisfied;

• ttf : Z is the Time To Fulfil the goal; and

• p : P is a plan to achieve the goal, it defines the sub-goals of this goal (P
is the set all plans).

Definition 8 (Plan). A plan is defined by the tuple

〈g1, g2, ..., gn, o〉

where

• gi : G (1 ≤ i ≤ n) are the sub-goals;

• o : {sequence, choice, parallel} is the operator among the sub-goals
(whether one or all sub-goal have to be achieved and whether in sequence
or parallel).

TODO: add gpc (goal pre-conditions)

1.1.3 Normative Specification

Definition 9 (Norm). A norm is composed by the following elements:

〈id, c, ρ, d,m, ttf〉

where

• id is the id of the norm;

7

• c is the activation condition of the norm;

• ρ is the role;

• d is the type (obliged or permitted);

• m is the mission; and

• ttt is the deadline.

We can read ‘when c holds, the agents playing ρ are d to commit to the mission
m before ttf ’.

Properties:

• Inheritance (all obligations and permissions are inherited)

〈id, c, ρ, d,m, ttf〉 ∈ NS ∧ ρ′ < ρ ⇒ 〈id, c, ρ′, d,m, ttf〉 ∈ NS (14)

1.2 Organisation Entity

Definition 10 (OE). An Organisation Entity (OE) is defined by the elements
of the following tuple:

〈OS,A,GI,SI〉

where

• OS is a organisation specification of the OE;

• A is a set of agent’s identifiers;

• GI is a set of group instances GI created in the OE; and

• SI is a set of scheme instances SI created in the OE.

Definition 11 (GI). A Group Instance (GI) is defined by the elements of the
following tuple:

〈id,GS, players, subgroups,RS〉

where

• id is a unique identifier of the group;

• GS : GS is the specification of the group;

• players : R → 2A is function that maps each available role in the corre-
sponding GS to the set of agents that are playing that role;

• subgroups : GS → 2GI is a function that maps each groups specification
to a set of group instances;

8

• RS : 2SI is a set of schemes’ identification the group is responsible for.

A group instance g is well formed if the role and subgroup cardinality are re-
spected and all subgroups are also well formed:

well formed(g) = ∀ρ∈R |players(ρ)| ≤ maxrpGS(ρ) ∧
|players(ρ)| ≥ minrpGS(ρ) ∧

∀g∈GS |subgroups(g)| ≤ maxsgSG(g) ∧
|subgroups(g)| ≥ minsgSG(g) ∧

∀g′∈subgroups(g) well formed(g′)

Definition 12 (SI). A Scheme Instance (SI) is defined by the elements of the
following tuple:

〈id, S, commitments, achievements〉

where

• id is a unique identifier of the scheme instance;

• S : S is the specification of the scheme;

• commitments : M → 2A is a function that maps each mission in the
corresponding scheme specification to the set of agents that are committed
to that mission; and

• achievements : A → 2G is a function that maps each agent to the set of
goals it has achieved.

TODO: add goal state (satisfied as defined in the goal cardinality).

2 OML Semantics

This section is based on the paper [Hübner et al., 2009] that proposes the use of
normative programming language (NOPL) as the basis for both the semantics
and implementation ofMoise. Again, the detailed motivations, examples, and
justifications are in the papers. However the papers, due to the lack of space
and their objectives, do not include all the semantics, which are then include
here.4

The basic idea of the semantic is to define how the organisational actions change
the organisation, their consequences, and constraints. These aspects are written
in a normative program that is automatically created from OS/OE. Briefly:

1. The organisation (OS + OE) is translated to a NOPL program.

4An alternative semantics for Moise is presented in [van Riemsdijk et al., 2010].

9

2. This program is interpreted by the organisation platform where the agents
interact with the organisation. That interaction is then managed and
regulated by the NOPL program.

3. Since the normative language has formal operational semantics, and the
translation from OS/OE to NOPL is automatic and also formal, the se-
mantics of an OS/OE is formally defined by the semantics of the NOPL
program.5

The result of translation process is exemplified in Appendix A, which con-
tains the result of the translation for a particular OS. More details are
also documented in the program that does the translation, it is available in
src/ora4mas/nopl/tools/os2nopl.java.

We use translation rules (briefly “t-rules”) to formalise how the organisation is
translated into NOPL. Such rules have the following format:

condition
ID

<code>

where ID is the name of the t-rule, condition is a boolean expression, and
<code> is an excerpt of code in NOPL that is produced in case the condition
holds. Details of the application of these rules are provided in the examples
given later.

2.1 NOPL for OS

The t-rule, identified by OT, that generates the NOPL code for an organisation
specification OS is:

OT(OS)
scope organisation(idOS) {

RIH(OS)
FPL
GT
ST

}

There is no condition for this t-rule. The produced code is defined by other
t-rules. The former defines the role hierarchy and the second includes in the

5Not all elements of OS/OE are translated to NOPL, so the semantics presented here is
partial.

10

generated code a rule that verifies whether an agent is playing a role or not
based on the role hierarchy.

ρ1 < ρ2
RIH(OS)

subrole(ρ1,ρ2).

FPL
fplay(A,R,G) :- play(A,R,G).

fplay(A,R,G) :- subrole(R1,R) & fplay(A,R1,G).

The rules GT and ST produce code for the groups and schemes and are defined
in the sequel.

(you can see an example of the result of this translation in appendix A.)

2.2 NOPL for Groups

The t-rule, identified by GT, that generates the NOPL code for a group instance
GI of type GS is:

GT(GI,GS)
scope group(idGS) {

group id(idGI).
P(GI) RG(GI)
RCR(GS) RCP(GS) GSR(GS)
GSP(role in group)

GSP(role cardinality)

GSP(role compatibility)

GSP(well formed responsible)

}

There is no condition for this t-rule. The produced code (typeset in typewriter
font) is a normative program with an identification idGS and facts, rules, and
norms that are produced by specific t-rules (P, RG, ...) defined in the sequel.
Variables, typeset in italics (as in idGS), are replaced by their values obtained
from the condition of the t-rule. (recall that idGS denotes the element id of the
tuple GS.)

2.2.1 Facts

For group normative programs, the following facts are produced by the trans-
lation:

11

• play(a,ρ,gr): agent a plays the role ρ in the group instance identified
by gr.

ρ ∈ R a ∈ playersGI(ρ)
P(GI)

play(a,ρ,idGI).

• responsible(g,s): the group instance g is responsible for the missions
of scheme instance s.

s ∈ SGI
RG(GI)

responsible(idGI,s).

• role cardinality(ρ,max,min): the cardinality of some role in the
group.

ρ ∈ R maxrpGS(ρ) > 0
RCR(GS)

role cardinality(ρ,maxrpGS(ρ),minrpGS(ρ)).

• compatible(ρ1,ρ2): role ρ1 is compatible with ρ2.

ρ1 ∈ R ρ2 ∈ compatGS(ρ1)
RCP(GS)

compatible(ρ1,ρ2).

• subgroup(sg,gt,pg): the group instance sg is a subgroup of group in-
stance pg and the groups specification of sg is gt ∈ GS.

g ∈ GS sg ∈ subgroupsGI(g)
SG(GI)

subgroup(sg,g,idGI).

• subgroup well formed(g): the subgroup instance g is well formed.

2.2.2 Rules

In the group translation we have one rule that states whether the group is well
formed.

GSR(GS)
rplayers(R,G,V) :- .count(play(,R,G),V).

well formed(G) :- GSWFR(GS) GSWFSG(GS).

12

ρ ∈ R maxrpGS(ρ) > 0
GSWFR(GS)

rplayers(ρ,G,Vρ) &

Vρ >= minrpGS(ρ) &

Vρ <= maxrpGS(ρ)

sg ∈ R maxsgGS(sg) > 0
GSWFSG(GS)

.count(subgroup(,sg,G),Ssg) &

Ssg >= minsgGS(sg) &

Ssg <= maxsgGS(sg) &

.findall(GInst, subgroup(GInst, ,G), ListSubgroups) &

all subgroups well formed(ListSubgroups).

all subgroups well formed([]).

all subgroups well formed([H|T]) :-

subgroup well formed(H) &

all subgroups well formed(T).

2.2.3 Norms

Norms in group normative programs are used to manage properties (role car-
dinality, compatibility, etc.). The non compliance with the properties can be
either regimented (leading to a fail) of the creation of an obligation to someone
to check the case. Regimented properties are those without an entry the NS.

6 ∃ 〈id, c, ρ, d,m, ttf〉 ∈ NS | c = #p
GSP(p)

norm p:
pdc(p)

-> fail(p).

where pdc is a function that maps the ids of properties to its condition in NOPL
as defined in Table 1.

Non regimented properties have an entry in the NS stating what to do. They
are translated by the following t-rule:

〈id, c, ρ, d,m, ttf〉 ∈ NS c = #p
GSP(p)

norm id:
pdc(p) &

group id(Gr) & monitor scheme(MonSch) &

fplay(A,ρ,Gr)
-> obligation(A,p,committed(A,m,),‘now‘+‘ttf‘).

13

id condition

group
role in group play(Agt,R,Gr) & not role cardinality(R, ,)

role cardinality group id(Gr) & role cardinality(R, ,RMax) &

rplayers(R,Gr,RP) & RP > RMax

role compatibility play(Agt,R1,Gr) & play(Agt,R2,Gr) &

R1 < R2 & not compatible(R1,R2)

well formed responsible responsible(Gr,S) & not well formed(Gr)

scheme
mission permission committed(Agt,M,S) &

not (mission role(M,R) &

responsible(Gr,S) & fplay(Agt,R,Gr))

mission leaved leaved mission(Agt,M,S) &

not mission accomplished(S,M)

mission cardinality scheme id(S) & mission cardinality(M, ,Max)

mplayers(M,S,MP) & MP > Max

ach not enabled goal achieved(S,G,Agt) & goal(M,G, , , ,) &

not mission accomplished(S,M) & not enabled(S,G)

ach not committed goal achieved(S,G,Agt) & goal(M,G, , , ,) &

not mission accomplished(S,M) & not committed(Agt,M,S)

goal non compliance obligation(Agt,ngoa(S,M,G),Obj,TTF) &

not Obj & ‘now‘ > TTF

Table 1: Pre-defined conditions for norms (pdc function)

2.3 NOPL for Schemes

The t-rule that generates the NOPL code for a scheme instance SI specified by
S is:

ST(SI,S)
scope scheme(idS) {

scheme id(idSI).
SM(S) SMR(S) SG(S)
SR(S)
SSP(mission permission)

SSP(mission leaved)

SSP(mission cardinality)

SSP(ach not enabled goal)

SSP(ach not committed goal)

SSP(goal non compliance)

NS
}

14

2.3.1 Facts

For scheme normative programs, the following facts are produced by the trans-
lation:

• committed(a,m,s): agent a is committed to mission m in scheme s.

TODO: add t-rule

• achieved(s,g,a): goal g in scheme s has been achieved by agent a.

TODO: add t-rule

TODO: add leaved mission

TODO: add satisfied

• mission cardinality(m,min,max): is a fact that defines the cardinal-
ity of a mission (e.g. mission cardinality(mCol,1,5)).

The t-rule that produces these facts are:

m ∈MS maxmpS(m) > 0
SM(S)

mission cardinality(m,minmpS(m),maxmpS(m)).

• mission role(m,ρ): the role ρ is permitted or obliged to commit to
mission m (e.g. mission role(mMan,editor)).

〈id, c, ρ, t,m, ttf〉 ∈ NS maxmpS(m) > 0
SMR(S)

mission role(m,ρ).

• mission goal(m,g): the mission m comprises goal g (e.g.
mission goal(mMan,wsec)).

TODO: add rw rule for mission goal

• goal(m,g,pre-cond,t,card,‘ttf‘): is a fact that defines the arguments
for a goal g: its missions, identification, pre-conditions, type, cardi-
nality, and TTF (e.g. goal([mMan],wsec,[wcon],achievement,all,‘2
days‘)).

〈id, gm, type, card, ttf, p〉 ∈ G id ∈ schemegoals(S)
SG(G)

goal(gm,id,gpc(g),type,card,ttf).

TODO: define function schemegoals as the goals included in the scheme.
It is computed from the goals tree defined by the plans.

15

2.3.2 Rules

Besides facts, we define some rules that are useful to infer the state of the
scheme (e.g. whether it is well-formed) and goals (e.g. whether it is enabled to
be pursued by the agents or not). The rules produced by SR are general for any
kind of scheme and those produced by SRW are specific for the scheme being
translated.

SR(S)
is finished(S) :- satisfied(S,gr).

mission accomplished(S,M) :-

.findall(Goal, goal(M,Goal, ,achievement, ,), MissionGoals) &

all satisfied(S,MissionGoals).

all satisfied(,[]).

all satisfied(S,[G|T]) :- satisfied(S,G) & all satisfied(S,T).

// goal G of scheme S is enabled to be pursued:

// all its pre-conditions have been achieved

enabled(S,G) :-

goal(,G,PCG, , NP,) & NP \== 0 & all satisfied(S,PCG).

// number of players of a mission M in scheme S

mplayers(M,S,V) :- .count(committed(,M,S),V).

// .count(X) counts how many instances of X are known

well formed(S) :- SRW(S).

m ∈M maxmpS(m) > 0
SRW(S)

mission accomplished(S,m)

|

mplayers(m,S,Vm) & Vm >= minmpS(m) & Vm <= maxmpS(m)

2.3.3 Norms

We have three classes of norms in NOPL for schemes: norms for goals, norms
for properties, and domain norms (which are explicitly stated in the normative
specification as oml-norms). For the former class, we define the following generic
norm to express the Moise semantics for commitment:

16

SR(S)
norm ngoal:

committed(A,M,S) & mission goal(M,G) & goal(,G, , , ,D) &

well formed(S) & enabled(S,G)

-> obligation(A,ngoal,achieved(S,G,A),‘now‘ + D).

This norm can be read as “when an agent A: (1) is committed to a mission
M that (2) includes a goal G, and (3) the mission’s scheme is well-formed, and
(4) the goal is enabled, then agent A is obliged to achieve the goal G before its
deadline D”.

The second class of norms is related to properties (see Table 1). For instance,
in the case of mission cardinality, the norm has to define the consequences of
situations where there are more agents committed to a mission than permitted
in the scheme specification. Two kinds of consequences are possible, obligation
and regimentation, and the designer chooses one or the other when writing the
OS. Regimentation is the default consequence and it is used when there is no
norm for the property in the normative specification. Otherwise the consequence
will be an obligation. The two t-rules below detail the produced norms for the
regimentation and obligation cases of mission cardinality.

6 ∃ 〈id, c, ρ, d,m, ttf〉 ∈ NS | c = #p
SSP(p)

norm p:
pdc(p)

-> fail(p).

〈id, c, ρ, d,m, ttf〉 ∈ NS c = #p
SSP(p)

norm id:
pdc(p) &

scheme id(Gr) & responsible(Gr,S) &

monitor scheme(MonSch) &

fplay(A,ρ,Gr)
-> obligation(A,p,committed(A,m,),‘now‘+‘ttf‘).

For the third class of norms, each oml-norm of type obligation in the norma-
tive specification of the OS has a corresponding norm in the NOPL program.
Whereas OML obligations refer to roles and missions, NPL requires that obli-
gations are for agents and towards a goal. The NOPL norm thus identifies the
agents playing the role in groups responsible for the scheme and, if the number
of current players still does not reach the maximum cardinality, the agent is
obliged to achieve a state where it is committed to the mission. The following
t-rule expresses just that:

〈id, c, ρ, t,m, ttf〉 ∈ NS m ∈M t = obl

17

NS
norm id:

c &

scheme id(S) & responsible(Gr,S) &

mplayers(m,S,V) & V < maxmp(m) &

fplay(A,ρ,Gr) &

not mission accomplished(S,m)

-> obligation(A,id,committed(A,m,S),‘now‘+‘ttf‘).

2.4 Organisational Actions

Organisational actions change the state of the organisational entity (OE).
Change the OE, new facts are included/removed in the normative program
triggering norms.

2.4.1 Role adoption

When agent a adopts the role ρ in the group instance gi, the state of gi is
changed as follows:

〈id,GS, players, subgroups,RS〉 −→ 〈id,GS, players⊕ρ 7→ {players(ρ)∪{a}}, subgroups,RS〉

This change in the state produces a new fact play (see t-rule P(GI)). The fact
play is used in the following norms.

• property role in group: the role being adopted must belong to the group.

• property role cardinality: the maximal cardinality of the role is not
achieved yet.

• property role compatibility: the new role is compatible with previous.

• norms produced by the t-rule NS: agents playing some roles are obliged
to commit to some mission.

The role adoption may thus trigger these norms.

2.4.2 Leave role

When agent a leaves the role ρ in the group instance gi, the state of gi is changed
as follows:

18

〈id,GS, players, subgroups,RS〉 −→ 〈id,GS, players	ρ 7→ {players(ρ)∪{a}}, subgroups,RS〉

Related norms:

• property well formed responsible: this norms is triggered if the role leaving
brings the group to a not well formed state and the group is responsible
for a scheme. A group can be responsible for a scheme only if well formed.

• norms produced by the t-rule NS: if the agent does not play the role
anymore, it is not obliged to commit the corresponding missions.

2.4.3 Add responsible group

When the group gi starts being responsible for the scheme instance si, its state
changes as follows:

〈id,GS, players, subgroups,RS〉 −→ 〈id,GS, player, subgroups,RS ∪ {si}〉

Related norms:

• property well formed responsible: a group can be responsible for a scheme
only if well formed.

• norms produced by the t-rule NS: agent playing roles in gi are responsible
to fulfil the missions of the scheme si.

2.4.4 Commit to mission

When agent a commits to the mission m in the scheme instance si, the state of
si is changed as follows:

〈id, S, commitments, achievements〉
↓

〈id, S, commitments⊕m 7→ {commitments(m) ∪ {a}}, achievements〉

Related norms:

• property mission permission: the agent have to have the permission for
the mission (based on its roles and groups).

19

• property mission cardinality.

• norm ngoal: the agent has to achieve the enabled goals of its missions.

• norms produced by the t-rule NS: the obligations state by these norms are
fulfilled.

2.4.5 Leave mission

When agent a commits to the mission m in the scheme instance si, the state of
si is changed as follows:

〈id, S, commitments, achievements〉
↓

〈id, S, commitments	m 7→ {commitments(m) ∪ {a}}, achievements〉

Related norms:

• property mission leaved: the agent should not leave a mission not accom-
plished yet.

• norm ngoal: the agent is not obliged to achieve the enabled goals of the
leaved mission.

• norms produced by the t-rule NS: the obligation to commit to the mission
may be reintroduced (if the leave operation succeeds).

2.4.6 Goal achievement

When agent a achieves goal g in the scheme instance si, the state of si is changed
as follows:

〈id, S, commitments, achievements〉
↓

〈id, S, commitments, achievements⊕ a 7→ {achievements(a) ∪ {g}}〉

Related norms:

• property ach not enabled goal: the goal has to be enabled.

• property ach not committed goal: the agent have to be committed to a
mission that includes the goal.

• norm ngoal: the obligation of this norm is fulfilled.

20

A Writing Paper example

A.1 Structural Specification

A.2 Functional Specification

21

Mission Cardinalities

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

mr 1..1
ms 1..1

Goals

goal type cardinality TTF

wtitle achievement 1 1 day
wabs achievement 1 1 day
wsectitle achievement all 1 day
wsec achievement all 7 days
wcon achievement 1 2 days
wrefs achievement all 1 hour

reward achievement all 0 day
sanction achievement all 0 day

A.3 Normative Specification

id condition role type mission TTF

n1 editor permission mMan –
n2 writer obligation mCol 1 day
n3 writer obligation mBib 1 day
n4 unfulfilled(n2) editor obligation ms 3 hours
n5 fulfilled(n3) editor obligation mr 3 hours
n6 #goal non compliance editor obligation ms 3 hours
n7 #role compatibility editor obligation ms 30 minutes
n8 #mission cardinality editor obligation ms 1 hour

A.4 NOPL program

/*

This program was automatically generated from

the organisation specification ’wp’

on Novembro 12, 2013 - 16:08:32

This is a MOISE tool, see more at http://moise.sourceforge.net

22

*/

scope organisation(wp) {

// Role hierarchy

subrole(author,soc).

subrole(editor,author).

subrole(writer,author).

// f* rules implement the role hierarchy transitivity

// t* rules implement the transitivity of some relations

// fplay(A,R,G) is true if A play R in G or if A play a subrole of R in G

fplay(A,R,G) :- play(A,R,G).

fplay(A,R,G) :- subrole(R1,R) & fplay(A,R1,G).

// fcompatible(R1,R2,S) is true if R1 or its sub-roles are compatible with R2 in scope S

fcompatible(R1,R2,S) :- tsubrole(R1,R2).

fcompatible(R1,R2,S) :- tsubrole(R1,R1a) & tsubrole(R2,R2a) & compatible(R1a,R2a,S).

fcompatible(R1,R2,S) :- tcompatible(R1,R2,S,[R1,R2]).

tcompatible(R1,R2,S,Path) :- compatible(R1,R3,S) & not .member(R3,Path) & tcompatible(R3,R2,S,[R3|Path]).

tsubrole(R,R).

tsubrole(R1,R2) :- subrole(R1,R2).

tsubrole(R1,R2) :- subrole(R1,R3) & tsubrole(R3,R2).

scope group(wpgroup) {

// ** Facts from OS

role_cardinality(editor,1,1).

role_cardinality(writer,1,5).

compatible(editor,writer,gr_inst).

compatible(writer,editor,gr_inst).

// ** Rules

rplayers(R,G,V) :- .count(play(_,R,G),V).

well_formed(G) :-

rplayers(editor,G,Veditor) & Veditor >= 1 & Veditor <= 1 &

rplayers(writer,G,Vwriter) & Vwriter >= 1 & Vwriter <= 5 &

.findall(GInst, subgroup(GInst,_,G), ListSubgroups) & all_subgroups_well_formed(ListSubgroups).

all_subgroups_well_formed([]).

all_subgroups_well_formed([H|T]) :- subgroup_well_formed(H) & all_subgroups_well_formed(T).

// ** Properties check

norm role_in_group:

play(Agt,R,Gr) &

group_id(Gr) &

not role_cardinality(R,_,_)

23

-> fail(role_in_group(Agt,R,Gr)).

norm role_cardinality:

group_id(Gr) &

role_cardinality(R,_,RMax) &

rplayers(R,Gr,RP) &

RP > RMax

-> fail(role_cardinality(R,Gr,RP,RMax)).

norm n7: // role_compatibility

play(Agt,R1,Gr) & play(Agt,R2,Gr) & R1 < R2 & not fcompatible(R1,R2,gr_inst) &

group_id(Gr) & monitor_scheme(MonSch) &

fplay(A,editor,Gr)

-> obligation(A,n7(R1,R2,Gr),committed(A,ms,MonSch), ‘now‘+‘30 minutes‘).

norm well_formed_responsible:

responsible(Gr,S) &

not monitor_scheme(S) &

not well_formed(Gr)

-> fail(well_formed_responsible(Gr)).

norm subgroup_in_group:

group_id(Gr) &

subgroup(G,GT,Gr) &

not subgroup_cardinality(GT,_,_)

-> fail(subgroup_in_group(G,GT,Gr)).

norm subgroup_cardinality:

group_id(Gr) &

subgroup_cardinality(SG,_,SGMax) &

.count(subgroup(_,SG,Gr),SGP) &

SGP > SGMax

-> fail(subgroup_cardinality(SG,Gr,SGP,SGMax)).

} // end of group wpgroup

scope scheme(writePaperSch) {

// ** Facts from OS

mission_cardinality(mManager,1,1).

mission_cardinality(mColaborator,1,5).

mission_cardinality(mBib,1,1).

mission_role(mManager,editor).

mission_role(mColaborator,writer).

mission_role(mBib,writer).

mission_goal(mManager,wtitle).

mission_goal(mManager,wsectitles).

mission_goal(mManager,wabs).

mission_goal(mManager,wconc).

mission_goal(mManager,wp).

mission_goal(mColaborator,wsecs).

mission_goal(mBib,wrefs).

goal([],fdv,[wsectitles],achievement,0,‘1 year‘).

24

goal([],finish,[wconc, wrefs],achievement,0,‘1 year‘).

goal([mManager],wtitle,[],achievement,all,‘1 day‘).

goal([mManager],wsectitles,[wabs],achievement,all,‘1 day‘).

goal([mColaborator],wsecs,[fdv],achievement,all,‘7 days‘).

goal([mManager],wabs,[wtitle],achievement,all,‘1 day‘).

goal([mManager],wp,[sv],achievement,all,‘5 seconds‘).

goal([mManager],wconc,[wsecs],achievement,all,‘1 day‘).

goal([],sv,[finish],achievement,0,‘1 year‘).

goal([mBib],wrefs,[wsecs],achievement,all,‘1 hour‘).

// ** Rules

mplayers(M,S,V) :- .count(committed(_,M,S),V).

well_formed(S) :-

(mission_accomplished(S,mManager) | mplayers(mManager,S,VmManager) & VmManager >= 1 & VmManager <= 1) &

(mission_accomplished(S,mColaborator) | mplayers(mColaborator,S,VmColaborator) & VmColaborator >= 1 & VmColaborator <= 5) &

(mission_accomplished(S,mBib) | mplayers(mBib,S,VmBib) & VmBib >= 1 & VmBib <= 1).

is_finished(S) :- satisfied(S,wp).

mission_accomplished(S,M) :- .findall(Goal, mission_goal(M,Goal), MissionGoals) & all_satisfied(S,MissionGoals).

all_satisfied(_,[]).

all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

// enabled goals (i.e. dependence between goals)

enabled(S,G) :- goal(_, G, PCG, _, NP, _) & NP \== 0 & all_satisfied(S,PCG).

// ** Norms

norm n3:

scheme_id(S) & responsible(Gr,S) &

mplayers(mColaborator,S,V) & V < 5 &

fplay(A,writer,Gr) &

not mission_accomplished(S,mColaborator) // if all mission’s goals are satisfied, the agent is not obliged to commit to the mission

-> obligation(A,n3,committed(A,mColaborator,S), ‘now‘+‘1 day‘).

norm n2:

scheme_id(S) & responsible(Gr,S) &

mplayers(mBib,S,V) & V < 1 &

fplay(A,writer,Gr) &

not mission_accomplished(S,mBib) // if all mission’s goals are satisfied, the agent is not obliged to commit to the mission

-> obligation(A,n2,committed(A,mBib,S), ‘now‘+‘1 day‘).

// --- Goals ---

// agents are obliged to fulfill their enabled goals

norm ngoal:

committed(A,M,S) & mission_goal(M,G) & goal(_,G,_,achievement,_,D) &

well_formed(S) & not satisfied(S,G) & enabled(S,G)

-> obligation(A,ngoal(S,M,G),achieved(S,G,A),‘now‘ + D).

// --- Properties check ---

norm n6: // goal_non_compliance

obligation(Agt,ngoal(S,M,G),Obj,TTF) & not Obj & ‘now‘ > TTF &

scheme_id(S) & responsible(Gr,S) & monitor_scheme(MonSch) &

25

fplay(A,editor,Gr)

-> obligation(A,n6(obligation(Agt,ngoal(S,M,G),Obj,TTF)),committed(A,ms,MonSch), ‘now‘+‘3 hours‘).

norm mission_permission:

committed(Agt,M,S) &

not (mission_role(M,R) &

responsible(Gr,S) &

fplay(Agt,R,Gr))

-> fail(mission_permission(Agt,M,S)).

norm mission_left:

leaved_mission(Agt,M,S) &

not mission_accomplished(S,M)

-> fail(mission_left(Agt,M,S)).

norm n8: // mission_cardinality

scheme_id(S) & mission_cardinality(M,_,MMax) & mplayers(M,S,MP) & MP > MMax &

scheme_id(S) & responsible(Gr,S) & monitor_scheme(MonSch) &

fplay(A,editor,Gr)

-> obligation(A,n8(M,S,MP,MMax),committed(A,ms,MonSch), ‘now‘+‘1 hour‘).

norm ach_not_enabled_goal:

achieved(S,G,Agt) &

mission_goal(M,G) &

not mission_accomplished(S,M) &

not enabled(S,G)

-> fail(ach_not_enabled_goal(S,G,Agt)).

norm ach_not_committed_goal:

achieved(S,G,Agt) &

mission_goal(M,G) &

not mission_accomplished(S,M) &

not committed(Agt,M,S)

-> fail(ach_not_committed_goal(S,G,Agt)).

} // end of scheme writePaperSch

scope scheme(monitoringSch) {

// ** Facts from OS

mission_cardinality(ms,1,1).

mission_cardinality(mr,1,1).

mission_role(mr,editor).

mission_role(ms,editor).

mission_goal(ms,sanction).

mission_goal(mr,reward).

goal([],monitor,[],achievement,0,‘1 year‘).

goal([mr],reward,[],achievement,all,‘1 year‘).

goal([ms],sanction,[],achievement,all,‘1 year‘).

// ** Rules

mplayers(M,S,V) :- .count(committed(_,M,S),V).

well_formed(S) :-

26

(mission_accomplished(S,ms) | mplayers(ms,S,Vms) & Vms >= 1 & Vms <= 1) &

(mission_accomplished(S,mr) | mplayers(mr,S,Vmr) & Vmr >= 1 & Vmr <= 1).

is_finished(S) :- satisfied(S,monitor).

mission_accomplished(S,M) :- .findall(Goal, mission_goal(M,Goal), MissionGoals) & all_satisfied(S,MissionGoals).

all_satisfied(_,[]).

all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

// enabled goals (i.e. dependence between goals)

enabled(S,G) :- goal(_, G, PCG, _, NP, _) & NP \== 0 & all_satisfied(S,PCG).

// --- Goals ---

// agents are obliged to fulfill their enabled goals

norm ngoal:

committed(A,M,S) & mission_goal(M,G) & goal(_,G,_,achievement,_,D) &

well_formed(S) & not satisfied(S,G) & enabled(S,G)

-> obligation(A,ngoal(S,M,G),achieved(S,G,A),‘now‘ + D).

// --- Properties check ---

norm goal_non_compliance:

obligation(Agt,ngoal(S,M,G),Obj,TTF) &

not Obj &

‘now‘ > TTF

-> fail(goal_non_compliance(obligation(Agt,ngoal(S,M,G),Obj,TTF))).

norm mission_permission:

committed(Agt,M,S) &

not (mission_role(M,R) &

responsible(Gr,S) &

fplay(Agt,R,Gr))

-> fail(mission_permission(Agt,M,S)).

norm mission_left:

leaved_mission(Agt,M,S) &

not mission_accomplished(S,M)

-> fail(mission_left(Agt,M,S)).

norm mission_cardinality:

scheme_id(S) &

mission_cardinality(M,_,MMax) &

mplayers(M,S,MP) &

MP > MMax

-> fail(mission_cardinality(M,S,MP,MMax)).

norm ach_not_enabled_goal:

achieved(S,G,Agt) &

mission_goal(M,G) &

not mission_accomplished(S,M) &

not enabled(S,G)

-> fail(ach_not_enabled_goal(S,G,Agt)).

norm ach_not_committed_goal:

achieved(S,G,Agt) &

mission_goal(M,G) &

not mission_accomplished(S,M) &

not committed(Agt,M,S)

27

-> fail(ach_not_committed_goal(S,G,Agt)).

} // end of scheme monitoringSch

} // end of organisation wp

References

[Gâteau et al., 2005] Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E.
(2005). MOISEinst: An organizational model for specifying rights and duties
of autonomous agents. In Third European Workshop on Multi-Agent Systems
(EUMAS 2005), pages 484–485, Brussels Belgium.

[Hannoun, 2002] Hannoun, M. (2002). MOISE: un modèle organisationnel pour
les systèmes multi-agents. Thèse (doctorat), École Nationale Supérieure des
Mines de Saint-Etienne.

[Hübner et al., 2009] Hübner, J. F., Boissier, O., and Bordini, R. H. (2009).
Normative programming for organisation management infrastructures. In
Polleres, A. and Padget, J., editors, Workshop on Coordination, Organization,
Institutions and Norms in agent systems (COIN09@MALLOW) Torino, Italy,
7th–11th September, volume 494. CEUR.

[Hübner et al., 2002] Hübner, J. F., Sichman, J. S., and Boissier, O. (2002). A
model for the structural, functional, and deontic specification of organizations
in multiagent systems. In Bittencourt, G. and Ramalho, G. L., editors, Pro-
ceedings of the 16th Brazilian Symposium on Artificial Intelligence (SBIA’02),
volume 2507 of LNAI, pages 118–128, Berlin. Springer.

[van Riemsdijk et al., 2010] van Riemsdijk, B., Hindriks, K., Jonker, C. M., and
Sierhuis, M. (2010). Formal organizational constraints: A semantic approach.
In van der Hoek, W., Kaminka, G. A., Lespérance, Y., Luck, M., and Sen,
S., editors, Proc. of 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pages 823–830.

28

	Organisation Model
	Organisational Specification
	Structural Specification
	Functional Specification
	Normative Specification

	Organisation Entity

	OML Semantics
	NOPL for OS
	NOPL for Groups
	Facts
	Rules
	Norms

	NOPL for Schemes
	Facts
	Rules
	Norms

	Organisational Actions
	Role adoption
	Leave role
	Add responsible group
	Commit to mission
	Leave mission
	Goal achievement

	Writing Paper example
	Structural Specification
	Functional Specification
	Normative Specification
	NOPL program

