
Multi-Agent Programming

Olivier Boissier1, Rafael H. Bordini2, Mehdi Dastani3,

Jomi F. Hübner4, Alessandro Ricci5

1EMSE, France
Olivier.Boissier@emse.fr

2INF-UFRGS, Brazil
R.Bordini@inf.ufrgs.br

3Utrecht University, Netherlands
mehdi@cs.uu.nl

4DAS-UFSC, Brazil
jomi@das.ufsc.br

5University of Bologna, Italy
a.ricci@unibo.it

European Agent Systems Summer School

23–27 August, 2010 — Saint Etienne, France

Olivier.Boissier@emse.fr
R.Bordini@inf.ufrgs.br
mehdi@cs.uu.nl
jomi@das.ufsc.br
a.ricci@unibo.it


Outline of the MAP Course

Introduction

AOP

About Agent Oriented Programming

Jason

2APL

EOP

About Environment Oriented Programming

A&A and CArtAgO

OOP

About Organisation Oriented Programming

Moise

2OPL

Conclusions

Practical Exercise: a hands-on lab session!



Introduction



Introduction AOP EOP OOP Conclusion

Agent-Oriented Software Development Methodology

Multi-agent systems are a development in software engineering

resulting in a new paradigm

Requirement ⇒ Analysis ⇒ Design ⇒ Implementation ⇒ Test

The aim is to provide high-level abstraction to model and

develop complex systems

Structural analysis methodology

Object-oriented methodology

Agent-oriented methodology (e.g. Gaia, Prometheus)

4 / 280



Introduction AOP EOP OOP Conclusion

Abstraction in Multi-Agent Systems

Individual Agent Level: Autonomy, Situatedness

Cognitive concepts: beliefs, desires/goals, intention/plans

Deliberation and decision: sense/reason/act,

reactive/pro-active

Multi-Agent Level: Social and Organizational Structures

Roles: functionalities, activities, and responsibilities

Organizational Rules: constraints on roles and their

interactions, norms, deadlines, obligations

Organizational Structures: topology of interaction patterns

and the control of activities

Environment: Resources and Services that MAS can access

and control; sensing and acting in an environment

5 / 280



Introduction AOP EOP OOP Conclusion

Agent-Oriented Software Engineering: Prometheus

Slide taken from Michael Winikoff

6 / 280



Introduction AOP EOP OOP Conclusion

Agent-Oriented Software Engineering: Gaia

COLLECTION OF
REQUIREMENTS

ANALYSIS

ARCHITECTURAL
DESIGN

DETAILED
DESIGN

IMPLEMENTATION

Agent Model Service Model

Role Model Interaction Model

Organizational
    Patterns

Organizational
     Structure

Organizational
      Rules

     Preliminary
Interaction Model

Environmental
     Model

Preliminary
Role Model

Subdivide Systems into
   Sub-Organizations

Requirements

7 / 280



Introduction AOP EOP OOP Conclusion

Agent Oriented Programming

Proposed by Shoham [Shoham, 1993]

Use of mentalistic notions and a societal view of

computation (anthropomorphism)

Separation of Concerns: Agents – Organisations –

Environment

Programming languages for agents have developed a lot

since then, but still not a mature paradigm

Programming languages/frameworks for organisation and

environment are also being developed

Some agent development platforms have formal basis, others

don’t

8 / 280



Introduction AOP EOP OOP Conclusion

BDI Architecture

Intentional Stance (Dennett)

Practical Reasoning (Bratman)

IRMA (Bratman, Isreal, Pollack)

PRS (Georgeff, Lansky)

dMARS (Kinny)

BDI Logics and Agent Architecture (Rao, Georgeff)

Wooldridge, Singh, ...

9 / 280



Introduction AOP EOP OOP Conclusion

PRS Architecture

10 / 280



Introduction AOP EOP OOP Conclusion

Programming Languages for Cognitive Agents

Programming Languages for Multi-Agent Systems

Data Structures + Programming Instructions

E.g., 2APL, Jason, Jadex, JACK, GOAL

Data Structures to represent agent mental state

Beliefs: General and specific information available to agent

Goals: Objectives that agent want to reach

Events: Observations of (environmental) changes

Capabilities: Actions that agent can perform

Plans: Procedures to achieve objectives
Reasoning rules: Reason about goals and plans

goal → plan

events → plan

plan → plan

11 / 280



Introduction AOP EOP OOP Conclusion

Programming Languages for Cognitive Agents

Programming Instructions to process mental states

Generate Plans for Received Events

Generate Plans for Goals

Process Exceptions and Handle Failures

Repair Plans

Select Plans for Execution

Execute Plans

Agent Interpreter or Agent Deliberation is a loop consisting of

such instructions. The loop determines the behaviour of the

agent.

12 / 280



Introduction AOP EOP OOP Conclusion

Programming Languages/frameworks for Organisations

Data Structures to represent the state of organisation

Agents, Roles, Groups

Norms, Obligations, Prohibitions, Permissions, Violations

Dependency, Power, Delegation, Information relations

Deadlines, Sanctions, Rewards

Agent Management System, Directory Facilitator

Programming Instructions to control and coordinate
agents’ behaviours

Endogenous: The control is a part of the agent program
Exogenous: The control is performed by an external program

Monitoring Agents’ Behaviors

Enforcing Organisational Laws and Rules

Regimenting Organisational Laws and Rules

13 / 280



Introduction AOP EOP OOP Conclusion

Programming Languages/frameworks for Environments

Data Structures to represent the state of the environment

Data bases, Services, Data types, Artifacts

Programming Instructions to process sense and act
operations

Realising action effects

Providing events and sense information

Synchronising actions

Processing Artifact Operations

14 / 280



AOP



Outline

2 AOP: Agent Oriented Programming

About AOP
Shortfalls

Trends

Jason
Introduction to Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans

Other Language Features

Comparison With Other Paradigms

The Jason Platform

Perspectives: Some Past and Future Projects

Conclusions

2APL: A Practical Agent Programming Language
Syntax

2APL: Modularity



About AOP



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Agent Oriented Programming

Use of mentalistic notions and a societal view of

computation [Shoham, 1993]

Heavily influence by the BDI architecture and reactive

planning systems

Various language constructs for the sophisticated
abstractions used in AOSE

Agent: Belief, Goal, Intention, Plan

Organisation: Group, Role, Norm, Interactions

Environment: Artifacts, Percepts, Actions

18 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Agent Oriented Programming
Features

Reacting to events × long-term goals

Course of actions depends on circumstance

Plan failure (dynamic environments)

Rational behaviour

Social ability

Combination of theoretical and practical reasoning

19 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Literature

Books: [Bordini et al., 2005a], [Bordini et al., 2009]

Proceedings: ProMAS, DALT, LADS, ... [Baldoni et al., 2010,

Dastani et al., 2010, Hindriks et al., 2009, Baldoni et al., 2009,

Dastani et al., 2008b, Baldoni et al., 2008, Dastani et al., 2008a,

Bordini et al., 2007b, Baldoni and Endriss, 2006,

Bordini et al., 2006b, Baldoni et al., 2006, Bordini et al., 2005b,

Leite et al., 2005, Dastani et al., 2004, Leite et al., 2004]

Surveys: [Bordini et al., 2006a], [Fisher et al., 2007] ...

Languages of historical importance: Agent0 [Shoham, 1993],

AgentSpeak(L) [Rao, 1996],

MetateM [Fisher, 2005],

3APL [Hindriks et al., 1997],

Golog [Giacomo et al., 2000]

Other prominent languages: Jason [Bordini et al., 2007c],

Jadex [Pokahr et al., 2005], 2APL [Dastani, 2008a],

GOAL [Hindriks, 2009], JACK [Winikoff, 2005]

But many others languages and platforms... 20 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Languages and Platforms

Jason (Hübner, Bordini, ...); 3APL and 2APL (Dastani, van

Riemsdijk, Meyer, Hindriks, ...); Jadex (Braubach, Pokahr);

MetateM (Fisher, Guidini, Hirsch, ...); ConGoLog (Lesperance,

Levesque, ... / Boutilier – DTGolog); Teamcore/ MTDP (Milind

Tambe, ...); IMPACT (Subrahmanian, Kraus, Dix, Eiter); CLAIM

(Amal El Fallah-Seghrouchni, ...); GOAL (Hindriks); BRAHMS

(Sierhuis, ...); SemantiCore (Blois, ...); STAPLE (Kumar, Cohen,

Huber); Go! (Clark, McCabe); Bach (John Lloyd, ...); MINERVA

(Leite, ...); SOCS (Torroni, Stathis, Toni, ...); FLUX

(Thielscher); JIAC (Hirsch, ...); JADE (Agostino Poggi, ...);

JACK (AOS); Agentis (Agentis Software); Jackdaw (Calico

Jack); ...

21 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

The State of Multi-Agent Programming

Already the right way to implement MAS is to use an AOSE

Methodology (Prometheus, Gaia, Tropos, ...) and an MAS

Programming Language!

Many agent languages have efficient and stable interpreters

— used extensively in teaching

All have some programming tools (IDE, tracing of agents’

mental attitudes, tracing of messages exchanged, etc.)

Finally integrating with social aspects of MAS

Growing user base

22 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Shortfalls

IDEs and programming tools are still not anywhere near the

level of OO languages

Debugging is a serious issue — much more than “mind

tracing” is needed

Combination with organisational models is very recent —

much work still needed

Principles for using declarative goals in practical

programming problems still not “textbook”

Large applications and real-world experience much needed!

23 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Trends I

Modularity and encapsulation

Debugging MAS is hard: problems of concurrency, simulated

environments, emergent behaviour, mental attitudes

Logics for Agent Programming languages

Further work on combining with interaction, environments,

and organisations

We need to put everything together: rational agents,

environments, organisations, normative systems, reputation

systems, economically inspired techniques, etc.

 Multi-Agent Programming

24 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Research on Multi-Agent Systems...

—

Whatever you do in MAS, make it available in a

programming language/platform for MAS!!!

—

25 / 280



Jason



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

AgentSpeak
The foundational language for Jason

Originally proposed by Rao [Rao, 1996]

Programming language for BDI agents

Elegant notation, based on logic programming

Inspired by PRS (Georgeff & Lansky), dMARS (Kinny), and

BDI Logics (Rao & Georgeff)

Abstract programming language aimed at theoretical results

27 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason
A practical implementation of a variant of AgentSpeak

Jason implements the operational semantics of a variant of

AgentSpeak

Has various extensions aimed at a more practical

programming language (e.g. definition of the MAS,

communication, ...)

Highly customised to simplify extension and

experimentation

Developed by Jomi F. Hbner and Rafael H. Bordini

28 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Main Language Constructs and Runtime Structures

Beliefs: represent the information available to an agent (e.g.

about the environment or other agents)

Goals: represent states of affairs the agent wants to bring

about

Plans: are recipes for action, representing the agent’s

know-how

Events: happen as consequence to changes in the agent’s

beliefs or goals

Intentions: plans instantiated to achieve some goal

29 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Main Architectural Components

Belief base: where beliefs are stored

Set of events: to keep track of events the agent will have to

handle

Plan library: stores all the plans currently known by the agent

Set of Intentions: each intention keeps track of the goals the

agent is committed to and the courses of action it

chose in order to achieve the goals for one of

various foci of attention the agent might have

30 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason Interpreter
Basic Reasoning cycle

perceive the environment and update belief base

process new messages

select event

select relevant plans

select applicable plans

create/update intention

select intention to execute

31 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason Rreasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

32 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Beliefs — Representation

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].

friend(bob,alice)[source(bob)].

lier(alice)[source(self),source(bob)].

˜lier(bob)[source(self)].

33 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Beliefs — Dynamics I

by perception

beliefs annotated with source(percept) are automatically updated

accordingly to the perception of the agent

by intention

the plan operators + and - can be used to add and remove

beliefs annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

34 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Beliefs — Dynamics II

by communication

when an agent receives a tell message, the content is a new belief

annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s BB

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s BB

35 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Goals — Representation

Types of goals

Achievement goal: goal to do

Test goal: goal to know

Syntax

Goals have the same syntax as beliefs, but are prefixed by

! (achievement goal) or

? (test goal)

Example (Initial goal of agent Tom)

!write(book).

36 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Goals — Dynamics I

by intention

the plan operators ! and ? can be used to add a new goal

annotated with source(self)

...

// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);

...

37 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Goals — Dynamics II

by communication – achievement goal

when an agent receives an achieve message, the content is a new

achievement goal annotated with the sender of the message

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

...

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

38 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Goals — Dynamics III

by communication – test goal

when an agent receives an askOne or askAll message, the

content is a new test goal annotated with the sender of the

message

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom will unify with Answer

39 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Triggering Events — Representation

Events happen as consequence to changes in the agent’s

beliefs or goals

An agent reacts to events by executing plans

Types of plan triggering events

+b (belief addition)

-b (belief deletion)

+!g (achievement-goal addition)

-!g (achievement-goal deletion)

+?g (test-goal addition)

-?g (test-goal deletion)

40 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Plans — Representation

An AgentSpeak plan has the following general structure:

triggering event : context ¡- body.

where:

the triggering event denotes the events that the plan is

meant to handle

the context represent the circumstances in which the plan

can be used

the body is the course of action to be used to handle the

event if the context is believed true at the time a plan is

being chosen to handle the event

41 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Plans — Operators for Plan Context

Boolean operators

& (and)

| (or)

not (not)

= (unification)

>, >= (relational)

<, <= (relational)

== (equals)

\ == (different)

Arithmetic operators

+ (sum)

- (subtraction)

* (multiply)

/ (divide)

div (divide – integer)

mod (remainder)

** (power)

42 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Plans — Operators for Plan Body

A plan body may contain:

Belief operators (+, -, -+)

Goal operators (!, ?, !!)

Actions (internal/external) and Constraints

Example (plan body)

+rain : time to leave(T) & clock.now(H) & H ¿= T

¡- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X ¿ 10; // constraint to carry on

close(door).// external action

43 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Plans — Example

+green patch(Rock)[source(percept)]

: not battery charge(low)

¡- ?location(Rock,Coordinates);

!at(Coordinates);

!examine(Rock).

+!at(Coords)

: not at(Coords) & safe path(Coords)

¡- move towards(Coords);

!at(Coords).

+!at(Coords)

: not at(Coords) & not safe path(Coords)

¡- ...

+!at(Coords) : at(Coords).

44 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Plans — Dynamics

The plans that form the plan library of the agent come from

initial plans defined by the programmer

plans added dynamically and intentionally by

.add plan

.remove plan

plans received from

tellHow messages

untellHow

45 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Strong Negation

Example

+!leave(home)

: ˜raining
¡- open(curtains); ...

+!leave(home)

: not raining & not ˜raining
¡- .send(mum,askOne,raining,Answer,3000); ...

46 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Prolog-like Rules in the Belief Base

Example

likely color(Obj,C) :-

colour(Obj,C)[degOfCert(D1)] &

not (colour(Obj, )[degOfCert(D2)] & D2 ¿ D1) &

not ˜colour(C,B).

47 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Plan Annotations

Like beliefs, plans can also have annotations, which go in

the plan label

Annotations contain meta-level information for the plan,

which selection functions can take into consideration

The annotations in an intended plan instance can be changed

dynamically (e.g. to change intention priorities)

There are some pre-defined plan annotations, e.g. to force a

breakpoint at that plan or to make the whole plan execute

atomically

Example (an annotated plan)

@myPlan[chance of success(0.3), usual payoff(0.9),

any other property]

+!g(X) : c(t) ¡- a(X).

48 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Failure Handling: Contingency Plans

Example (an agent blindly committed to g)

+!g : g.

+!g : ... ¡- ... ?g.

-!g : true ¡- !g.

49 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Meta Programming

Example (an agent that asks for plans on demand)

-!G[error(no relevant)] : teacher(T)

¡- .send(T, askHow, { +!G }, Plans);
.add plan(Plans);

!G.

in the event of a failure to achieve any goal G due to no

relevant plan, asks a teacher for plans to achieve G and

then try G again

The failure event is annotated with the error type, line,

source, ... error(no relevant) means no plan in the agent’s

plan library to achieve G

{ +!G } is the syntax to enclose triggers/plans as terms

50 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Internal Actions

Unlike actions, internal actions do not change the

environment

Code to be executed as part of the agent reasoning cycle

AgentSpeak is meant as a high-level language for the agent’s

practical reasoning and internal actions can be used for

invoking legacy code elegantly

Internal actions can be defined by the user in Java

libname.action name(. . .)

51 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Standard Internal Actions

Standard (pre-defined) internal actions have an empty library
name

.print(term1, term2, . . .)

.union(list1, list2, list3)

.my name(var)

.send(ag,perf ,literal)

.intend(literal)

.drop intention(literal)

Many others available for: printing, sorting, list/string

operations, manipulating the beliefs/annotations/plan library,

creating agents, waiting/generating events, etc.

52 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason × Java I

Consider a very simple robot with two goals:

when a piece of gold is seen, go to it

when battery is low, go charge it

53 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason × Java II

Example (Java code – go to gold)

public class Robot extends Thread {
boolean seeGold, lowBattery;

public void run() {
while (true) {

while (! seeGold) {
}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }

(how to code the charge battery behaviour?)

54 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason × Java III

Example (Java code – charge battery)

public class Robot extends Thread {
boolean seeGold, lowBattery;

public void run() {
while (true) {

while (! seeGold)

if (lowBattery) charge();

while (seeGold) {
a = selectDirection ();

if (lowBattery) charge();

doAction(go(a));

if (lowBattery) charge();

} } } }

(note where the tests for low battery have to be done)

55 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason × Java IV

Example (Jason code)

+see(gold)

¡- !goto(gold).

+!goto(gold) :see(gold) // long term goal

¡- !select direction(A);

go(A);

!goto(gold).

+battery(low) // reactivity

¡- !charge.

ˆ!charge[state(started)] // goal meta-events

¡- .suspend(goto(gold)).

ˆ!charge[state(finished)]

¡- .resume(goto(gold)).

56 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason × Prolog

With the Jason extensions, nice separation of theoretical and

practical reasoning

BDI architecture allows

long-term goals (goal-based behaviour)

reacting to changes in a dynamic environment

handling multiple foci of attention (concurrency)

Acting on an environment and a higher-level conception of a

distributed system

57 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Communication Infrastructure

Various communication and execution management

infrastructures can be used with Jason:

Centralised: all agents in the same machine,

one thread by agent, very fast

Centralised (pool): all agents in the same machine,

fixed number of thread,

allows thousands of agents

Jade: distributed agents, FIPA-ACL

Saci: distributed agents, KQML

... others defined by the user (e.g. AgentScape)

58 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Definition of a Simulated Environment

There will normally be an environment where the agents are

situated

The agent architecture needs to be customised to get

perceptions and act on such environment

We often want a simulated environment (e.g. to test an

MAS application)

This is done in Java by extending Jason’s Environment class

59 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Interaction with the Environment Simulator

Environment
Simulator

Agent 
Architecture

executeAction

getPercepts

change
percepts

Reasoner

perceive

act

60 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Example of an Environment Class

1 import jason.*;

2 import ...;

3 public class robotEnv extends Environment {
4 ...

5 public robotEnv() {
6 Literal gp =

7 Literal.parseLiteral(”green˙patch(souffle)”);

8 addPercept(gp);

9 }
10

11 public boolean executeAction(String ag, Structure action) {
12 if (action.equals(...)) {
13 addPercept(ag,

14 Literal.parseLiteral(”location(souffle,c(3,4))”);

15 }
16 ...

17 return true;

18 } }
61 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

MAS Configuration Language I

Simple way of defining a multi-agent system

Example (MAS that uses JADE as infrastructure)

MAS my˙system –

infrastructure: Jade

environment: robotEnv

agents:

c3po;

r2d2 at jason.sourceforge.net;

bob #10; // 10 instances of bob

classpath: ”../lib/graph.jar”;

˝

62 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

MAS Configuration Language II

Configuration of event handling, frequency of perception,

user-defined settings, customisations, etc.

Example (MAS with customised agent)

MAS custom –

agents: bob [verbose=2,paramters=”sys.properties”]

agentClass MyAg

agentArchClass MyAgArch

beliefBaseClass jason.bb.JDBCPersistentBB(

”org.hsqldb.jdbcDriver”,

”jdbc:hsqldb:bookstore”,

...

˝

63 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

MAS Configuration Language III

Example (CArtAgO environment)

MAS grid˙world –

environment: alice.c4jason.CEnv

agents:

cleanerAg

agentArchClass alice.c4jason.CogAgentArch

#3;

˝

64 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Jason Customisations

Agent class customisation:

selectMessage, selectEvent, selectOption, selectIntetion, buf,

brf, ...

Agent architecture customisation:

perceive, act, sendMsg, checkMail, ...

Belief base customisation:
add, remove, contains, ...

Example available with Jason: persistent belief base (in text

files, in data bases, ...)

65 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

jEdit Plugin

66 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Eclipse Plugin

67 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Mind Inspector

68 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Related Projects I

Speech-act based communication

Joint work with Renata Vieira, Álvaro Moreira, and Mike

Wooldridge

Cooperative plan exchange

Joint work with Viviana Mascardi, Davide Ancona

Plan Patterns for Declarative Goals

Joint work with M.Wooldridge

Planning (Felipe Meneguzzi and Colleagues)

Web and Mobile Applications (Alessandro Ricci and

Colleagues)

Belief Revision

Joint work with Natasha Alechina, Brian Logan, Mark Jago

69 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Related Projects II

Ontological Reasoning

Joint work with Renata Vieira, Álvaro Moreira

JASDL: joint work with Tom Klapiscak

Goal-Plan Tree Problem (Thangarajah et al.)

Joint work with Tricia Shaw

Trust reasoning (ForTrust project)

Agent verification and model checking

Joint project with M.Fisher, M.Wooldridge, W.Visser,

L.Dennis, B.Farwer

70 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Related Projects III

Environments, Organisation and Norms

Normative environments

Join work with A.C.Rocha Costa and F.Okuyama

MADeM integration (Francisco Grimaldo Moreno)

Normative integration (Felipe Meneguzzi)

CArtAgO integration

Moise+ integration

More on jason.sourceforge.net, related projects

71 / 280

jason.sourceforge.net


Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Some Trends for Jason I

Modularity and encapsulation

Capabilities (JACK, Jadex, ...)

Roles (Dastani et al.)

Mini-agents (?)

Recently done: meta-events

To appear soon: annotations for declarative goals,

improvement in plan failure handling, etc.

Debugging is hard, despite mind inspector, etc.

Further work on combining with environments and

organisations

72 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Summary

AgentSpeak

Logic + BDI

Agent programming language

Jason

AgentSpeak interpreter

Implements the operational semantics of AgentSpeak

Speech-act based communicaiton

Highly customisable

Useful tools

Open source

Open issues

73 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Acknowledgements

Many thanks to the

Various colleagues acknowledged/referenced throughout

these slides

Jason users for helpful feedback

CNPq for supporting some of our current researh

74 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Further Resources

http://jason.sourceforge.net

R.H. Bordini, J.F. Hübner, and

M. Wooldrige

Programming Multi-Agent Systems

in AgentSpeak using Jason

John Wiley & Sons, 2007.

75 / 280

http://jason.sourceforge.net


2APL: A Practical Agent
Programming Language



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Motivation

Effective and efficient implementation of MAS

architectures

Individual Cognitive Agents, Shared Environment,

Multi-Agent Organisation

Support Programming Principles and Techniques

Recursion, Compositionality, Abstraction, Exception

Handling, Encapsulation, Autonomy, Reusability,

Heterogeneity, Legacy Systems

Integrated Development Environment (IDE) for

Multi-Agent Systems

Editor, Debugging and Monitoring Facility, Support the

Development of Individual Agents, Multi-Agent Organisation,

and Shared Environment

77 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

2APL Features (1)

Programming Constructs

Multi-Agent System Which and how many agents to

create? Which environments?

Individual Agent Beliefs, Goals, Plans, Events, Messages

Programming Principles and Techniques

Abstraction Procedures and Recursion in Plans

Error Handling Plan Failure and their revision by Internal

Events, Execution of Critical Region of Plans

Legacy Systems Environment and External Actions

Encapsulation 2APL Modules, Including 2APL files in other

2APL files

Autonomy Adjustable Deliberation Process

78 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

2APL Features (2)

Integrated Development Environment

2APL platform is Built on JADE and uses related tools

2APL has an Eclipse Plug-in Editor and other Eclipse support

tools.

2APL has tools for monitoring mental attitudes of individual

agents, their reasoning and communications

Executing in one step or continuous mode

Programming of the Deliberation Process

79 / 280



Syntax



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

2APL Syntax: Programming Multi-Agent System

Example (Agents, Environments, and their Initialisations)

¡apaplmas¿

¡agent name=”w1” file=”worker.2apl”/¿

¡agent name=”w2” file=”worker.2apl”/¿

¡agent name=”m” file=”manager.2apl”¿

¡beliefs file=”nameWorkers.pl” /¿

¡/agent¿

¡environment name=”blockworld” file=”blockworld.jar”¿

¡parameter key=”gridWidth” value=”18”/¿

¡parameter key=”gridHeight” value=”18”/¿

¡/environment¿

¡/apaplmas¿

81 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

2APL Syntax: Programming Individual Agents

General Scheme

〈Program〉 ::= { ”Include:” 〈ident〉
| ”Beliefupdates:” 〈BelUpSpec〉
| ”Beliefs:” 〈beliefs〉
| ”Goals:” 〈goals〉
| ”Plans:” 〈plans〉
| ”PG-rules:” 〈pgrules〉
| ”PC-rules:” 〈pcrules〉
| ”PR-rules:” 〈prrules〉 }

82 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

2APL Syntax: Programming Individual Agents

Example (Cleaning Environment and Collecting Gold)

Beliefupdates:

– dirt(X,Y) ˝ PickUpDirt() – not dirt(X,Y) ˝

– pos(X,Y) ˝ goto(V,W) – not pos(X,Y), pos(V,W) ˝

Beliefs:

post(5,5).

dirt(3,6).

clean(world) :- not dirt(X,Y).

Goals:

hasGold(2) and clean(world) ,

hasGold(5)

PG-rules:

clean(world) ¡- dirt(X,Y) —

– goto(X,Y) ; PickUpDirt() ˝

PC-rules:

event(goldAt(X,Y)) ¡- true —

– goto(X,Y) ; PickUpGold() ˝

83 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

2APL Interpreter: Deliberation Cycle

Repeat

Apply PG-rules

For each internal event, find and apply a PR-rule

For each message, find and apply a PC-rule

For each external event, find and apply a PC-rule

Execute one step for each plan

84 / 280



2APL: Modularity



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Modularity in BDI-based Agent Programming

Modularity is an essential principle in structured

programming. It structures a computer program in separate

modules.

Modularization can be used for information hiding and

reusability.

Modularization in existing BDI-based Agent programming

languages is to structure an individual agent’s program in

separate modules, each encapsulating cognitive components.

86 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Modularity: Our Vision

Roles are functionalities to handle specific situations. They

can be specified in terms of BDI concepts.

An agent profile can be specified in terms of BDI concepts.

A module represents a BDI state on which it can deliberated.

A BDI agent is a deliberation process starting with a BDI

state.

2APL provides a set of programming constructs to

instantiate modules and to change the focus of

deliberation at run time.

87 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Modular 2APL

General Scheme

〈2APL Module〉 ::= ”Beliefupdates: 〈BelUpSpec〉”
| ”Beliefs:” 〈belief 〉
| ”Goals:” 〈goals〉
| ”Plans:” 〈plans〉
| ”PG-rules:” 〈pgrules〉
| . . .

. . .

〈plan〉 ::= ... | 〈createaction〉 | 〈releaseaction〉 | 〈moduleaction〉
. . .

〈createaction〉 ::= ”create(” 〈ident〉 ”,” 〈ident〉 ”)”

〈releaseaction〉 ::= ”release(” 〈ident〉 ”)”

〈moduleaction〉 ::= 〈ident〉 ”.” 〈maction〉
. . .

〈maction〉 ::= ”execute(” 〈condition〉 ”)”

| ”updateBB(” 〈belief 〉 ”)”

| ”adopt(”〈goal〉”)”

88 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Modular 2APL

Example (Exploring Environment and Collecting Gold)

Beliefs:

manager(m).

PC-rules:

message(A, request, play(explorer)) ¡- manager(A) —

–

create(explorer, myexp);

myexp.execute( B(gold(POS)) );

send(A, inform, gold(POS));

release(myexp)

˝

message(A, request, play(carrier, POS)) ¡- manager(A) —

–

create(carrier, mycar);

mycar.updateBB( gold(POS) );

mycar.execute( B(done) );

send(A, inform, done(POS))

release(mycar)

˝

89 / 280



Introduction AOP EOP OOP Conclusion About AOP Jason 2APL

Conclusion and Future works

2APL provides a variety of distinguished concepts: Beliefs,

Goals, Events, Plans, plan repairs, etc.

2APL has an complete operational semantics.

Logics are developed to verify 2APL programs.

2APL comes with an implemented framework that facilitates

the execution of multi-agent programs.

2APL has an Eclipse Plug-in with colored editors and other

IDE facilities such as debugging.

2APL supports a strong notion of BDI modularity.

Integrating different Goal Types in the interpreter.

90 / 280



EOP



Outline

3 Environment Programming

Why Environment Programming in MAS

Basic Support

Advanced Support

A&A and CArtAgO

Conclusions and Wrap-up



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Back to the Notion of Environment in MAS

The notion of environment is intrinsically related to the
notion of agent and multi-agent system

“An agent is a computer system that is situated in some

environment and that is capable of autonomous action in

this environment in order to meet its design

objective” [Wooldridge, 2002]

“An agent is anything that can be viewed as perceiving

its environment through sensors and acting upon the

environment through effectors.

” [Russell and Norvig, 2003]

Including both physical and software environments

93 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Single Agent Perspective

ENVIRONMENT

feedback

actions

percepts
effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

Perception

process inside agent inside of attaining awareness or

understanding sensory information, creating percepts

perceived form of external stimuli or their absence

Actions

the means to affect (change or inspect) the environment

94 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Multi-Agent Perspective

In evidence

overlapping spheres of visibility and influence

..which means: interaction

95 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Why Environment Programming

Basic level

to create testbeds for real/external environments

to ease the interface/interaction with existing software

environments

Advanced level
to uniformly encapsulate and modularise functionalities of
the MAS out of the agents

typically related to interaction, coordination, organisation,

security

externalisation

this implies changing the perspective on the environment

environment as a first-class abstraction of the MAS

endogenous environments (vs. exogenous ones)

programmable environments

96 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Environment Programming: General Issues

Defining the interface

actions, perceptions

data-model

Defining the environment computational model &
architecture

how the environment works

structure, behaviour, topology

core aspects to face: concurrency, distribution

Defining the environment programming model

how to program the environment

97 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Basic Support Overview

actions

percepts

SIMULATED 

WORLD

OR

INTERFACE

OR 

WRAPPER TO

EXISTING 

TECHNOLOGY 

EXTERNAL 

WORLD
(PHYSICAL OR 

COMPUTATIONAL)

MAS  ENVIRONMENT

REAL WORLD
(PHYSICAL OR 

COMPUTATIONAL)

mimicking

Example:

JAVA 

PLATFORMAGENTS

MAS 

98 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Basic Support: Features

Environment conceptually conceived as a single monolitic
block

providing actions, generating percepts

Environment API
to define the set of actions and program actions
computational behaviour

which include the generation of percepts

typically implemented using as single object/class in OO such
as Java

method to execute actions

fields to store the environment state

available in many agent programming languages/frameworks

e.g., Jason, 2APL, GOAL, JADEX

99 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

An Example: Jason [Bordini et al., 2007a]

Flexible Java-based Environment API
Environment base class to be specialised

executeAction method to specify action semantics

addPercept to generate percepts

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

100 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

MARS Environment in Jason

public class MarsEnv extends Environment {
  private MarsModel model;
  private MarsView  view;
  
  public void init(String[] args) {
        model = new MarsModel();
        view  = new MarsView(model);
        model.setView(view);
        updatePercepts();
  }
    
  public boolean executeAction(String ag, Structure action) {
    String func = action.getFunctor();
    if (func.equals("next")) {
      model.nextSlot();
    } else if (func.equals("move_towards")) {
      int x = (int)((NumberTerm)action.getTerm(0)).solve();
      int y = (int)((NumberTerm)action.getTerm(1)).solve();
      model.moveTowards(x,y);
    } else if (func.equals("pick")) {
      model.pickGarb();
    } else if (func.equals("drop")) {
      model.dropGarb();
    } else if (func.equals("burn")) {
      model.burnGarb();
    } else {
      return false;
    }
    
    updatePercepts();
    return true;
  }
  ...

  ...

    /* creates the agents perception 
     * based on the MarsModel */
  void updatePercepts() {

    clearPercepts();
        
    Location r1Loc = model.getAgPos(0);
    Location r2Loc = model.getAgPos(1);
        
    Literal pos1 =  Literal.parseLiteral
        ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
    Literal pos2 = Literal.parseLiteral
        ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

    addPercept(pos1);
    addPercept(pos2);

    if (model.hasGarbage(r1Loc)) {
      addPercept(Literal.parseLiteral("garbage(r1)"));
    }

    if (model.hasGarbage(r2Loc)) {
     addPercept(Literal.parseLiteral("garbage(r2)"));
    } 
  }

  class MarsModel extends GridWorldModel { ... }
    
  class MarsView extends GridWorldView { ... }    
}

101 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Jason Agents Playing on Mars

// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots). 

/* Plans */

+!check(slots) : not garbage(r1)
   <- next(slot);
      !!check(slots).
+!check(slots). 

+garbage(r1) : not .desire(carry_to(r2))
   <- !carry_to(r2).
   
+!carry_to(R)   
   <- // remember where to go back
      ?pos(r1,X,Y); 
      -+pos(last,X,Y);
    
      // carry garbage to r2
      !take(garb,R);
    
      // goes back and continue to check
      !at(last); 
      !!check(slots).
...

...

+!take(S,L) : true
   <- !ensure_pick(S); 
      !at(L);
      drop(S).

+!ensure_pick(S) : garbage(r1)
   <- pick(garb);
      !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
           move_towards(X,Y);
           !at(L).

102 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Another Example: 2APL [Dastani, 2008b]

2APL

BDI-based agent-oriented programming language integrating

declarative programming constructs (beliefs, goals) and

imperative style programming constructs (events, plans)

Java-based Environment API

Environment base class
implementing actions as methods

inside action methods external events can be generated to be

perceived by agents as percepts

103 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example: Block-world Environment in 2APL

package blockworld;

public class Env extends apapl.Environment {

public void enter(String agent, Term x, Term y, Term c){...}

public Term sensePosition(String agent){...}

public Term pickup(String agent){...}

public void north(String agent){...}

  ... 

}

104 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

2APL Agents in the block-world

BeliefUpdates:
  { bomb(X,Y) }         RemoveBomb(X,Y){ not bomb(X,Y) }
  { true }              AddBomb(X,Y)   { bomb(X,Y) }
  { carry(bomb) }       Drop( )        { not carry(bomb)}
  { not carry(bomb) }   PickUp( )      { carry(bomb) }

Beliefs:
  start(0,1).
  bomb(3,3).
  clean( blockWorld ) :- 
     not bomb(X,Y) , not carry(bomb).

Plans:
  B(start(X,Y)) ;
  @blockworld( enter( X, Y, blue ), L )

Goals:
  clean( blockWorld )

PG-rules:
  clean( blockWorld ) <- bomb( X, Y ) |
  {
    goto( X, Y );
    @blockworld( pickup( ), L1 );
    PickUp( );
    RemoveBomb( X, Y );
    goto( 0, 0 );
    @blockworld( drop( ), L2 );
    Drop( )
  }
...

...

PC-rules:
  goto( X, Y ) <- true |
  {
    @blockworld( sensePosition(), POS );
    B(POS = [A,B]);
    if B(A > X) then
    { @blockworld( west(), L );
      goto( X, Y )
    }
    else if B(A < X) then
    { @blockworld( east(), L );
      goto( X, Y )
    }
    else if B(B > Y) then
    { @blockworld( north(), L );
      goto( X, Y )
    }
    else if B(B < Y) then
    { @blockworld( south(), L );
      goto( X, Y )
    }
  }

  ...

105 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Environment Interface Stardard – EIS Initiative

Recent initiative supported by main APL research
groups [Behrens et al., 2010]

GOAL, 2APL, GOAL, JADEX, JASON

Goal of the initiative
design and develop a generic environment interface standard

a standard to connect agents to environments

... environments such as agent testbeds, commercial

applications, video games..

Principles

wrapping already existing environments

creating new environments by connecting already existing

apps

creating new environments from scratch

Requirements

generic

reuse

106 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

EIS Meta-Model

By means of the Env. Interface agents perform actions and
collect percepts

actually actions/percepts are issued to controllable entities in

environment model

represent the agent bodies, with effectors and sensors

107 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Environment Interface Features

Interface functions

attaching, detaching, and notifying observers (software design

pattern);

registering and unregistering agents;

adding and removing entities;

managing the agents-entities-relation;

performing actions and retrieving percepts;

managing the environment

Interface Intermediate language

to facilitate data-exchange

encoding percepts, actions, events

108 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Advanced Support Overview

Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2010b]

endogenous environments, i.e. that environment which is an

explicit part of the MAS

providing an exploitable design & programming abstraction

to build MAS applications

Outcome
distinguishing clearly between the responsibilities of agent and
environment (...and organisation, see OOP part)

separation of concerns

improving the engineering practice

109 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Three Support Levels [Weyns et al., 2007]

Basic interface support

Abstraction support level

Interaction-mediation support level

110 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Basic Interface Support

The environment enables agents to access the deployment
context

i.e. the hardware and software and external resources with

which the MAS interacts

111 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Abstraction Support

Bridges the conceptual gap between the agent abstraction
and low-level details of the deployment context

shields low-level details of the deployment context

112 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Interaction-Mediation Support

Regulate the access to shared resources

Mediate interaction between agents

113 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Environment Definition Revised

Environment definition revised [Weyns et al., 2007]

The environment is a first-class abstraction that provides the

surrounding conditions for agents to exist and that mediates both

the interaction among agents and the access to resources

114 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Highlights 1/2

First-class abstraction

environment as an independent building block in the MAS

encapsulating its own clear-cut responsibilities, irrespective of

the agents

The environment provides the surrounding conditions for
agents to exist

environment as an essential part of every MAS

the part of the world with which the agents interact, in which

the effects of the agents will be observed and evaluated

115 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Highlights 2/2

Environment as a glue

on their own, agents are just individual loci of control.

to build a useful system out of individual agents, agents must

be able to interact

the environment provides the glue that connects agents into a

working system

The environment mediates both the interaction among
agents and the access to resources

it provides a medium for sharing information and mediating
coordination among agents

as a mediator, the environment not only enables interaction,

it also constrains it

as such, the environment provides a design space that can be

exploited by the designer

116 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Responsibilities 1/3

Structuring the MAS

the environment is first of all a shared ?space? for the agents,

resources, and services which structures the whole system

Kind of structuring
physical structure

refers to spatial structure, topology, and possibly distribution,

see e.g.,

communication structure

refers to infrastructure for message transfer, infrastructure

for stigmergy, or support for implicit communication

social structure

refers to the organizational structure of the environment in

terms of roles, groups, societies

117 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Responsibilities 2/3

Embedding resources and services

resources and services can be situated either in the physical

structure or in the abstraction layer introduced by the

environment

the environment should provide support at the abstraction

level shielding low-level details of resources and services to

the agents

Encapsulating a state and processes
besides the activity of the agents, the environment can have
processes of its own, independent of agents

example: evaporation, aggregation, and diffusion of digital

pheromones

It may also provide support for maintaining agent-related
state

for example, the normative state of an electronic institution

or tags for reputation mechanisms

118 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Responsibilities 3/3

Ruling and governing function
the environment can define different types of rules on all
entities in the MAS.

constraints imposed by the domain at hand or laws imposed

by the designer

may restrict the access of specific resources or services to

particular types of agents, or determine the outcome of

agent interactions

preserving the agent system in a consistent state according

to the properties and requirements of the application domain

Examples

coordination infrastructures

e-Institutions

119 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Research on Environments for MAS

Environments for Multi-Agent Systems research field /
E4MAS workshop series [Weyns et al., 2005]

different themes and issues (see JAAMAS Special
Issue [Weyns and Parunak, 2007] for a good survey)

mechanisms, architectures, infrastructures,

applications [Platon et al., 2007, Weyns and Holvoet, 2007,

Weyns and Holvoet, 2004, Viroli et al., 2007]

the main perspective is (agent-oriented) software engineering

Focus of this tutorial: the role of the environment
abstraction in MAS programming

environment programming

120 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Environment Programming

Environment as first-class programming
abstraction [Ricci et al., 2010b]

software designers and engineers perspective

endogenous environments (vs. exogenous one)

programming MAS =
programming Agents + programming Environment

..but this will be extended to include OOP in next part

Environment as first-class runtime abstraction for agents

agent perspective

to be observed, used, adapted, constructed, ...

Defining computational and programming

frameworks/models also for the environment part

121 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Computational Frameworks for Environment

Programming: Issues

Defining the environment interface

actions, percepts, data model

contract concept

Defining the environment computational model

environment structure, behaviour

Defining the environment distribution model

topology

122 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Programming Models for the Environment: Desiderata

Abstraction

keeping the agent abstraction level e.g. no agents sharing and

calling OO objects

effective programming models for controllable and observable

computational entities

Modularity

away from the monolithic and centralised view

Orthogonality

wrt agent models, architectures, platforms

support for heterogeneous systems

123 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Programming Models for the Environment: Desiderata

Dynamic extensibility

dynamic construction, replacement, extension of environment

parts

support for open systems

Reusability

reuse of environment parts for different kinds of applications

124 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Existing Computational Frameworks

AGRE / AGREEN / MASQ [Stratulat et al., 2009]
AGRE – integrating the AGR (Agent-Group-Role)
organisation model with a notion of environment

Environment used to represent both the physical and social

part of interaction

AGREEN / MASQ – extending AGRE towards a unified

representation for physical, social and institutional

environments

Based on MadKit platform [Gutknecht and Ferber, 2000a]

GOLEM [Bromuri and Stathis, 2008]

Logic-based framework to represent environments for situated

cognitive agents

composite structure containing the interaction between

cognitive agents and objects

A&A and CArtAgO [Ricci et al., 2010b]

introducing a computational notion of artifact to design and

implement agent environments

125 / 280



A&A and CArtAgO



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Agents and Artifacts (A&A) Conceptual Model:

Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE 
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

127 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

A&A Basic Concepts [Omicini et al., 2008]

Agents

autonomous, goal-oriented pro-active entities
create and co-use artifacts for supporting their activities

besides direct communication

Artifacts
non-autonomous, function-oriented, stateful entities

controllable and observable

modelling the tools and resources used by agents

designed by MAS programmers

Workspaces

grouping agents & artifacts

defining the topology of the computational environment

128 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

A&A Programming Model Features [Ricci et al., 2007b]

Abstraction

artifacts as first-class resources and tools for agents

Modularisation

artifacts as modules encapsulating functionalities, organized

in workspaces

Extensibility and openness

artifacts can be created and destroyed at runtime by agents

Reusability

artifacts (types) as reusable entities, for setting up different

kinds of environments

129 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

A&A Meta-Model in More Detail [Ricci et al., 2010b]

Artifact

Operation

Observable 
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit

130 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE 

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS 

131 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

A World of Artifacts

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space

132 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

A Simple Taxonomy

Individual or personal artifacts
designed to provide functionalities for a single agent use

e.g. an agenda for managing deadlines, a library...

Social artifacts

designed to provide functionalities for structuring and

managing the interaction in a MAS
coordination artifacts [Omicini et al., 2004], organisation
artifacts, ...

e.g. a blackboard, a game-board,...

Boundary artifacts
to represent external resources/services

e.g. a printer, a Web Service

to represent devices enabling I/O with users

e.g GUI, console, etc.

133 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Actions and Percepts in Artifact-Based Environments

Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010c]

success/failure semantics, execution semantics

defining the contract provided by the environment

actions ←→ artifacts’ operation

the action repertoire is given by the dynamic set of operations

provided by the overall set of artifacts available in the workspace

can be changed by creating/disposing artifacts

action success/failure semantics is defined by operation

semantics

percepts ←→ artifacts’ observable properties + signals

properties represent percepts about the state of the environment

signals represent percepts concerning events signalled by the

environment

134 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Interaction Model: Use

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

Performing an action corresponds to triggering the execution
of an operation

acting on artifact?s usage interface

135 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Interaction Model: Operation execution

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

a process structured in one or multiple transactional steps

asynchronous with respect to agent

...which can proceed possibly reacting to percepts and

executing actions of other plans/activities

operation completion causes action completion

action completion events with success or failure, possibly with

action feedbacks

136 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Interaction Model: Observation

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

Agents can dynamically select which artifacts to observe

predefined focus/stopFocus actions

137 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Interaction Model: Observation

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

By focussing an artifact
observable properties are mapped into agent dynamic
knowledge about the state of the world, as percepts

e.g. belief base

signals are mapped as percepts related to observable events

138 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Artifact Linkability

WSP-X WSP-Y

linkedOp

Basic mechanism to enable inter-artifact interaction
linking artifacts through interfaces (link interfaces)

operations triggered by an artifact over an other artifact

Useful to design & program distributed environments

realised by set of artifacts linked together

possibly hosted in different workspaces

139 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Artifact Manual

Agent-readable description of artifact’s...
...functionality

what functions/services artifacts of that type provide

...operating instructions

how to use artifacts of that type

Towards advanced use of artifacts by intelligent
agents [Piunti et al., 2008]

dynamically choosing which artifacts to use to accomplish

their tasks and how to use them

strong link with Semantic Web research issues

Work in progress

defining ontologies and languages for describing the manuals

140 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

CArtAgO

Common ARtifact infrastructure for AGent Open

environment (CArtAgO) [Ricci et al., 2009b]

Computational framework / infrastructure to implement and
run artifact-based environment [Ricci et al., 2007c]

Java-based programming model for defining artifacts

set of basic API for agent platforms to work within

artifact-based environment

Distributed and open MAS
workspaces distributed on Internet nodes

agents can join and work in multiple workspace at a time

Role-Based Access Control (RBAC) security model

Open-source technology

available at http://cartago.sourceforge.net

141 / 280

http://cartago.sourceforge.net


Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Integration with Agent Languages and Platforms

Integration with existing agent platforms [Ricci et al., 2008]
available bridges: Jason, Jadex, AgentFactory, simpA, ...

ongoing: 2APL

including organisation platforms: Moise

framework [Hübner et al., 2002b, Hübner et al., 2006]

Outcome

developing open and heterogenous MAS
introducing a further perspective on interoperability besides
the ACL’s one

sharing and working in a common work environment

common object-oriented data-model

142 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

JaCa Platform

Integration of CArtAgO with Jason language/platform

a JaCa program is a dynamic set of Jason agents working

together in one or multiple CArtAgO workspaces

Mapping
actions

Jason agent external actions are mapped onto artifacts’

operations

percepts

artifacts’ observable properties are mapped onto agent beliefs

artifacts’ signals are mapped as percepts related to

observable events

data-model

Jason data-model is extended to manage also (Java) objects

143 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 1: A Simple Counter Artifact

class Counter extends Artifact {
  
  void init(){
    defineObsProp("count",0);
  }
  
  @OPERATION void inc(){
    ObsProperty p = getObsProperty("count");
    p.updateValue(p.intValue() + 1);
    signal("tick");
  }
}

inc

count 5

Some API spots

Artifact base class

@OPERATION annotation to mark artifact?s operations

set of primitives to work define/update/.. observable

properties

signal primitive to generate signals

144 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 1: User and Oberver Agents

!create_and_use.

+!create_and_use : true 
  <- !setupTool(Id);
     // use
     inc;
     // second use specifying the Id
     inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true 
  <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true 
  <- ?myTool(C);  // discover the tool
     focus(C).

+count(V) 
  <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]  
  <- println(“perceived a tick”).

+?myTool(CounterId): true 
  <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true 
  <- .wait(10); 
     ?myTool(CounterId).

OBSERVER(S)USER(S)

Working with the shared counter

145 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Pre-defined Artifacts

Each workspace contains by default a predefined set of
artifacts

providing core and auxiliary functionalities

i.e. a pre-defined repertoire of actions available to agents...

Among the others
workspace, type: cartago.WorkspaceArtifact

functionalities to manage the workspace, including security

operations: makeArtifact, lookupArtifact, focus,...

node, type: cartago.NodeArtifact

core functionalities related to a node

operations: createWorkspace, joinWorkspace, ...

console, type cartago.tools.Console

operations: println,...

blackboard, type cartago.tools.TupleSpace

operations: out, in, rd, ...

....

146 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 2: A Bounded-Buffer Artifact

public class BoundedBuffer extends Artifact {
  private LinkedList<Item> items;
  private int nmax;
  
  void init(int nmax){
    items = new LinkedList<Item>();
    defineObsProperty("n_items",0);
    this.nmax = nmax;
  }

  @OPERATION(guard="bufferNotFull") void put(Item obj){
    items.add(obj);

getObsProperty("n_items").updateValue(items.size());
  }

  @GUARD boolean bufferNotFull(Item obj){ return items.size() < nmax; }

  @OPERATION(guard="itemAvailable") void get(OpFeedbackParam<Item> res) {
    Item item = items.removeFirst();

res.set(item);
getObsProperty("n_items").updateValue(items.size());

  }

  @GUARD boolean itemAvailable(){ return items.size() > 0; }
}

put

n_items 5

get

Basic operation features

output parameters to represent action feedbacks

guards

147 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 2: Producers and Consumers

item_to_produce(0).
!produce.

+!produce: true 
  <- !setupTools(Buffer);
     !produceItems.

  
+!produceItems : true 
  <- ?nextItemToProduce(Item);
     put(Item);
     !!produceItems.

+?nextItemToProduce(N) : true 
  <- -item_to_produce(N);
     +item_to_produce(N+1).

+!setupTools(Buffer) : true 
  <- makeArtifact("myBuffer","BoundedBuffer",
                  [10],Buffer).

-!setupTools(Buffer) : true 
  <- lookupArtifact("myBuffer",Buffer).

!consume.

+!consume: true 
  <- ?bufferReady;
     !consumeItems.
    
+!consumeItems: true 
  <- get(Item);
     !consumeItem(Item);
     !!consumeItems.

+!consumeItem(Item) : true 
  <- .my_name(Me);
     println(Me,": ",Item).
  
+?bufferReady : true 
  <- lookupArtifact("myBuffer",_).  
-?bufferReady : true 
  <-.wait(50);
     ?bufferReady.

PRODUCERS CONSUMERS

148 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 3: A Tuple-Space Artifact

public class SimpleTupleSpace extends Artifact {
   TupleSet tset;
  
  void init(){
    tset = new TupleSet();
  }
  
  @OPERATION void out(String name, Object... args){
    tset.add(new Tuple(name,args));
  }
  
  @OPERATION void in(String name, Object... params){
    TupleTemplate tt = new TupleTemplate(name,params);
    await("foundMatch",tt);
    Tuple t = tset.removeMatching(tt);
    bind(tt,t);
  }

  @OPERATION void rd(String name, Object... params){
    TupleTemplate tt = new TupleTemplate(name,params);
    await("foundMatch",tt);
    Tuple t = tset.readMatching(tt);
    bind(tt,t);
  }
  
  @GUARD boolean foundMatch(TupleTemplate tt){
    return tset.hasTupleMatching(tt);
  }

  private void bind(TupleTemplate tt, Tuple t){...}
 

Multi-step operations
operations composed by multiple transactional steps,

possibly with guards

await primitive to define the steps
149 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Remarks

Process-based action execution semantics

action/operation execution can be long-term

action/operation execution can overlap

Key feature for implementing coordination functionalities

150 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 3: Dining Philosopher Agents

philo(0,"philo1",0,1).
philo(1,"philo2",1,2).
philo(2,"philo3",2,3).
philo(3,"philo4",3,4).
philo(4,"philo5",4,0).

!prepare_table.

+!prepare_table
  <- for ( .range(I,0,4) ) {
       out("fork",I);
       ?philo(I,Name,Left,Right);
       out("philo_init",Name,Left,Right);
     };
     for ( .range(I,1,4) ) {
       out("ticket");
     };
     println("done.").

!boot.

+!boot
  <- .my_name(Me);
     in("philo_init",Me,Left,Right);
     +my_left_fork(Left); +my_right_fork(Right);
     println(Me," ready.");
     !!enjoy_life.
     
+!enjoy_life
 <- !thinking; !eating; !!enjoy_life.

+!eating 
 <- !acquireRes; !eat; !releaseRes.
      
+!acquireRes : my_left_fork(F1) & my_right_fork(F2) 
  <- in("ticket"); in("fork",F1); in("fork",F2).
  
+!releaseRes: my_left_fork(F1) & my_right_fork(F2) 
 <-  out("fork",F1); out("fork",F2); out("ticket").
       
+!thinking <- .my_name(Me); println(Me," thinking").
+!eat <- .my_name(Me); println(Me," eating").

WAITER PHILOSOPHER AGENT

151 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 4: A Clock

public class Clock extends Artifact {

  boolean working;
  final static long TICK_TIME = 100;

      
  void init(){ working = false; }

    
  @OPERATION void start(){
    if (!working){
      working = true;
      execInternalOp("work");
    } else {
      failed("already_working");
    }
  }

  
  @OPERATION void stop(){ working = false; }

  @INTERNAL_OPERATION void work(){
    while (working){
      signal("tick");
      await_time(TICK_TIME);
    }
  }
}

!test_clock.

+!test_clock
  <- makeArtifac("myClock","Clock",[],Id);
     focus(Id);
     +n_ticks(0);
     start;
     println("clock started.").

@plan1
+tick: n_ticks(10)  
  <- stop;
     println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)  
  <- -+n_ticks(N+1);
     println("tick perceived!").

CLOCK CLOCK USER AGENT

Internal operations

execution of operations triggered by other operations

implementing controllable processes

152 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 5: GUI Artifacts

setValue

value 16.0

user

ok

closed

agent

Exploiting artifacts to enable interaction between human

users and agents

153 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 5: Agent and User Interaction

public class MySimpleGUI extends GUIArtifact {
  private MyFrame frame;
  
  public void setup() {
    frame = new MyFrame();
    
    linkActionEventToOp(frame.okButton,"ok");
    linkKeyStrokeToOp(frame.text,"ENTER","updateText");
    linkWindowClosingEventToOp(frame, "closed");
    defineObsProperty("value",getValue());
    frame.setVisible(true);   
  }

  @INTERNAL_OPERATION void ok(ActionEvent ev){
    signal("ok");
  }

  @OPERATION void setValue(double value){
    frame.setText(""+value);
    updateObsProperty("value",value);
  }
  ...
 
  @INTERNAL_OPERATION 
  void updateText(ActionEvent ev){
    updateObsProperty("value",getValue());
  }

  private int getValue(){
    return Integer.parseInt(frame.getText());
  }

  class MyFrame extends JFrame {...}
}

!test_gui.

+!test_gui
  <-  makeArtifact("gui","MySimpleGUI",Id);
      focus(Id).

+value(V) 
  <- println("Value updated: ",V).
  
+ok : value(V)
  <-  setValue(V+1).

+closed
  <-  .my_name(Me);
      .kill_agent(Me).
     

GUI ARTIFACT USER ASSISTANT AGENT 

154 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Remark: Action Execution & Blocking Behaviour

Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding
operation has completed or failed

action completion events generated by the environment and

automatically processed by the agent/environment platform

bridge

no need of explicit observation and reasoning by agents to

know if an action succeeded

However the agent execution cycle is not blocked!

the agent can continue to process percepts and possibly

execute actions of other intentions

155 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Example 6: Action Execution & Blocking Behaviour

// agent code

@processing_stream
+!processing_stream : true 
  <- makeArtifact(“myStream”,”Stream”,Id);
     focus(Id);
     +sum(0);
     generate(1000);
     ?sum(S);
     println(S).

@update [atomic]
+new_number(V) : sum(S)
  <- -+sum(S+V).

// artifact code

class Stream extends Artifact {
  ...
  @OPERATION void generate(int n){
    for (int i = 0; i < n; i++){
      signal("new_number",i);
    }
  }  
}

The agent perceives and processes new number percepts as
soon as they are generate by the Stream

even if the processing stream plan execution is suspended,

waiting for generate action completion

The test goal ?sum(S) is executed after generate action
completion

so we are sure that all numbers have been generated and

processed

156 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Other Features

Other CArtAgO features not discussed in this lecture
linkability

executing chains of operations across multiple artifacts

multiple workspaces

agents can join and work in multiple workspaces, concurrently

including remote workspaces

RBAC security model

workspace artifact provides operations to set/change the

access control policies of the workspace, depending on the

agent role

ruling agents’ access and use of artifacts of the workspace

...

See CArtAgO papers and manuals for more information

157 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

A&A and CArtAgO: Some Research Explorations

Designing and implementing artifact-based organisation
Infrastructures

ORA4MAS infrastructure [Hübner et al., 2009c]

Cognitive stigmergy based on artifact
environments [Ricci et al., 2007a]

Cognitive artifacts for knowledge representation and

coordination [Piunti and Ricci, 2009]

Artifact-based environments for

argumentation [Oliva et al., 2010]

Including A&A in AOSE methodology [Molesini et al., 2005]

...

158 / 280



Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Applying CArtAgO and JaCa

Using CArtAgO/JaCa for building real-world applications and

infrastructures

Some examples
JaCa-WS / CArtAgO-WS

building SOA/Web Services applications using

JaCa [Ricci et al., 2010a]

http://cartagows.sourceforge.net

JaCa-Web

implementing Web 2.0 applications using JaCa

http://jaca-web.sourceforge.net

JaCa-Android

implementing mobile computing applications on top of the

Android platform using JaCa

http://jaca-android.sourceforge.net

159 / 280

http://cartagows.sourceforge.net
http://jaca-web.sourceforge.net
http://jaca-android.sourceforge.net


Introduction AOP EOP OOP Conclusion Introduction Basic Advanced CArtAgO Wrap-up

Wrap-up

Environment programming

environment as a programmable part of the MAS

encapsulating and modularising functionalities useful for

agents’ work

Artifact-based environments
artifacts as first-class abstraction to design and program
complex software environments

usage interface, observable properties / events, linkability

artifacts as first-order entities for agents

interaction based on use and observation

agents dynamically co-constructing, evolving, adapting their

world

CArtAgO computational framework

programming and executing artifact-based environments

integration with heterogeneous agent platforms

JaCa case

160 / 280



OOP



Outline

4 Organisation Oriented Programming (OOP)

Motivations and Fundamentals

Some OOP approaches

Focus on the Moise framework
Moise Organisation Modelling Language (OML)

Moise Organisation Management Infrastructure (OMI)

Moise integration with agents & environment

2OPL: Organisation Oriented Programming Language



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Introduction: Intuitive notions of organisation

Organisations are structured, patterned systems of activity,

knowledge, culture, memory, history, and capabilities that are

distinct from any single agent [Gasser, 2001]

 Organisations are supra-individual phenomena

A decision and communication schema which is applied to a set of

actors that together fulfill a set of tasks in order to satisfy goals

while guarantying a global coherent state [Malone, 1999]

 definition by the designer, or by actors, to achieve a purpose

An organisation is characterized by : a division of tasks, a

distribution of roles, authority systems, communication systems,

contribution-retribution systems [Bernoux, 1985]

 pattern of predefined cooperation

An arrangement of relationships between components, which

results into an entity, a system, that has unknown skills at the level

of the individuals [Morin, 1977]

 pattern of emergent cooperation

163 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisation in MAS

Definition

Purposive supra-agent pattern of emergent or (pre)defined

agents cooperation, that could be defined by the designer or by

the agents themselves.

Pattern of emergent/potential cooperation

called organisation entity, institution, social relations,

commitments

Pattern of (pre)defined cooperation

called organisation specification, structure, norms, ...

164 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Perspective on organisations from EASSS’05 Tutorial (Sichman, Boissier)

Agents know  
about organisation 

Agents don’t know  
about organisation 

Local Representation Organisation Specification 
Observed Organisation 

Designer / Observer 
Bottom-up         Top-down Organisation Entity 

Agent Centred 

Organisation Centred 

165 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Perspective on organisations from EASSS’05 Tutorial (Sichman, Boissier)

Agents know  
about organisation 

Agents don’t know  
about organisation 

Agent Centred 
Swarms, AMAS, SASO 
Self-organisations … 

Organisation is observed. 
Implicitly programmed  
in Agents, Interactions,  
Environment. 

Social Reasoning 
Coalition formation 
Contract Net Protocol … 
Organisation is observed. 
Coalition formation 
mechanisms programmed 
in Agents. 

AOSE 
MASE, GAIA, MESSAGE, … 

Organisation is 
a design model. 
It is hard-coded 
in Agents 

TAEMS, STEAM, AGR 
MOISE+, OPERA, … 

Organisation-Oriented 
Programming of MAS 

Organisation Centred 
Local Representation Organisation Specification 
Observed Organisation 

Designer / Observer 
Bottom-up         Top-down Organisation Entity 

166 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisation Oriented Programming (OOP)

Organisation as a first class entity in the multi-agent eco-system

Clear distinction between description of the organisation wrt

agents, wrt environment

Different representations of the organisation:
Organisation specification

partially/totally accessible to the agents, to the environment,

to the organisation

Organisation entity

Local representation in the mental state of the agents

 possibly inconsistant with the other agents’

representations

Global/local representation in the MAS

 difficulty to manage and build such a representation in a

distributed and decentralized setting

Different sources of actions on (resp. of) the organisation by

(resp. on) agents / environment / organisation

167 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Components of OOP:

Organisation Modelling Language (OML)

Declarative specification of the organisation(s)

Specific constraints, norms and cooperation patterns
imposed on the agents

e.g. AGR [Ferber and Gutknecht, 1998],

TeamCore [Tambe, 1997], Islander [Esteva et al., 2001],

Moise+ [Hübner et al., 2002a], ...

Specific anchors for situating organisations within the
environment

e.g. embodied organisations [Piunti et al., 2009a]

168 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Components of OOP:

Organisation Management Infrastructure (OMI)

Coordination mechanisms, i.e. support infrastructure

e.g. MadKit [Gutknecht and Ferber, 2000b],

Karma [Pynadath and Tambe, 2003],

...

Regulation mechanisms, i.e. governance infrastructure

e.g. Ameli [Esteva et al., 2004],

S-Moise+ [Hübner et al., 2006],

ORA4MAS [Hübner et al., 2009b],

...

169 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Components of OOP:

Integration mechanisms

Agent integration mechanisms
allow agents to be aware of ant to deliberate on:

entering/exiting the organisation

modification of the organisation

obedience/violation of norms

sanctioning/rewarding other agents

e.g. J -Moise+ [Hübner et al., 2007], Autonomy based

reasoning [Carabelea, 2007], ProsA2 Agent-based reasoning

on norms [Ossowski, 1999], ...

Environment integration mechanisms
transform organisation into embodied organisation so that:

organisation may act on the environment (e.g. enact rules,

regimentation)

environment may act on the organisation (e.g. count-as rules)

e.g [Piunti et al., 2009b], [Okuyama et al., 2008]

170 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Motivations for OOP:

Applications point of view

Current applications show an increase in

Number of agents

Duration and repetitiveness of agent activities

Heterogeneity of the agents, Number of designers of agents

Agent ability to act, to decide,

Action domains of agents, ...

Openness, scalability, dynamicity, ...

More and more applications require the integration of human
communities and technological communities (ubiquitous and
pervasive computing), building connected communities
(ICities) in which agents act on behalf of users

Trust, security, ..., flexibility, adaptation

171 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Motivations for OOP:

Constitutive point of view

Organisation helps the agents to cooperate with the other
agents by defining common cooperation schemes

global tasks

protocols

groups, responsibilities

e.g. ‘to bid’ for a product on eBay is an institutional action only
possible because eBay defines the rules for that very action

the bid protocol is a constraint but it also creates the action

e.g. when a soccer team wants to play match, the organisation

helps the members of the team to synchronise actions, to

share information, etc

172 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Motivations for OOP:

Normative point of view

MAS have two properties which seem contradictory:

a global purpose

autonomous agents

 While the autonomy of the agents is essential, it may cause

loss in the global coherence of the system and achievement of

the global purpose

Embedding norms within the organisation of a MAS is a
way to constrain the agents’ behaviour towards the global
purposes of the organisation, while explicitly addressing the
autonomy of the agents within the organisation

 Normative organisation

e.g. when an agent adopts a role, it adopts a set of behavioural

constraints that support the global purpose of the

organisation.

It may decide to obey or disobey these constraints

173 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Motivations for OOP:

Agents point of view

Explicit representations, working environments are required so

that the agents are able to reason about the organisation:

to decide to enter into/leave from the organisation during
execution

 Organisation is no more closed

to change/adapt the current organisation

 Organisation is no more static

to obey/disobey the organisation

 Organisation is no more a regimentation

174 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Motivations for OOP:

Organisation point of view

Explicit representations, working environments are required so

that the organisation is able to “reason” about itself and about

the agents in order to ensure the achievement of its global

purpose:

to decide to let agents enter into/leave from the
organisation during execution

 Organisation is no more closed

to decide to let agents change/adapt the current
organisation

 Organisation is no more static and blind

to govern agents behaviour in the organisation (i.e. monitor,
enforce, regiment)

 Organisation is no more a regimentation

175 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

AGR [Ferber and Gutknecht, 1998]

Agent Group Role, previously known as AALAADIN

Agent: Active entity that plays roles within groups. An agent

may have several roles and may belong to several groups.

Group: set of agents sharing common characteristics, i.e.

context for a set of activities. Two agents cant communicate

with each other if they dont belong to the same group.

Role: Abstract representation of the status, position, function

of an agent within a group.

OMI: the Madkit platform

176 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

AGR OML Modelling Dimensions

P 
E 

Environment 

B 

B: agents’ possible behaviors 
P: agents’ behaviors that lead to global purpose 
E: agents’ possible behaviors constrained by the environment 
OS: agents’ possible behaviors structurally constrained by the organization 

OS 

Structural 
Specification 

177 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

AGR OML

Interaction  
protocol 

Group structure Role 1..* 
1 

contains 

source 

participant 

1 

* 

1..* 

* Role dependency Role properties 
* 

1 

1 1 

target 

Agent 

Group 

* 

1..* 

* 

1..* 

is member of 

plays 

1 

described by 
1 1 

initiator 1 

Agent  
level 

Organization  
level 

178 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

AGR OMI: Madkit

Multi-Agent Development Kit  
www.madkit.org 

179 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

STEAM [Tambe, 1997]

Shell for TEAMwork is a general framework to enable agents
to participate in teamwork.

Different applications: Attack, Transport, Robocup soccer

Based on an enhanced SOAR architecture and 300 domain

independent SOAR rules

Principles:

Team synchronization: Establish joint intentions, Monitor

team progress and repair, Individual may fail or succeed in

own role

Reorganise if there is a critical role failure

Reassign critical roles based on joint intentions

Decision theoretic communication

Supported by the TEAMCORE OMI.

180 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

STEAM OML Modelling Dimensions

E 

Environment 

P 

Structural 
Specification 

OF Functional 
Specification 

OS 

B 

B: agents’ possible behaviors 
P: agents’ behaviors that lead to global purpose 
E: agents’ possible behaviors constrained by the environment 
OS: agents’ possible behaviors structurally constrained by the organization 
OF: agents’ possible behaviors functionally constrained by the organization 

181 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

STEAM OML [Tambe, 1997]

TASK FORCE 

ORDERS 
OBTAINER 

SAFETY INFO 
OBTAINER 

FLIGHT 
TEAM 

ROUTE 
PLANNER 

ESCORT TRANSPORT 

HELO1 HELO2 HELO1 HELO2 

Organization: hierarchy of roles that 
may be filled by agents or groups of 
agents. 

[TASK FORCE] 

[TASK FORCE] [TASK FORCE] 
[TASK FORCE] 

[ORDERS 
OBTAINER] 

[TASK FORCE] [ESCORT] [TRANSPORT] 

[TASK FORCE] 

EVACUATE  

PROCESS 
ORDERS 

EXECUTE 
MISSION 

LANDING 
ZONE 
MANEUVERS 

OBTAIN 
ORDERS 

FLY-FLIGHT 
PLAN 

MASK 
OBSERVE PICKUP 

FLY-CONTROL 
ROUTE 

Team Plan:  
•  initial conditions,  
•  term. cond. : achievability, irrelevance, 
unachievability 
•  team-level actions. 

182 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

STEAM OMI: TEAMCORE [Pynadath and Tambe, 2003]

Team Oriented 
Programming 
Interface 

Team-Oriented Program 
(team plans and organization) 

execute the team 
plans of the team-
oriented program. 

TEAMCORE 
Wrapper 

TEAMCORE 
Wrapper 

TEAMCORE 
Broadcast net 

TEAMCORE 
Wrapper 

TEAMCORE 
Wrapper 

Middle 
agents 

Domain 
Agent 

Agent 
Naming 
Service 

KARMA 

Registration 

Registration Human 

Domain 
Agent 

Domain 
Agent 

Human 
Beings 

requirements for roles 
searches for agents with relevant expertise 
assists in assigning agents to organizational roles. 

183 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ISLANDER

based on different influences: economics, norms, dialogues,

coordination

 electronic institutions

combining different alternative views: dialogical, normative,

coordination

Institution Description Language: Performative structure

(Network of protocols), Scene (multi-agent protocol), Roles,

Norms

Ameli as OMI

184 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ISLANDER OML Modelling Dimensions

E 

Environment 

P 

B 

B: agents’ possible behaviors 
P: agents’ behaviors that lead to global purpose 
E: agents’ possible behaviors constrained by the environment 
OS: agents’ possible/permitted/obliged behaviors structurally constrained by the organisation 
OI: agents’ possible/permitted/obliged behaviors interactionally constrained by the organisation 

OI Structural 
Specification 

OS 

Dialogical 
Specification 

185 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ISLANDER OML: IDL [Esteva et al., 2001]

Performative Structure 

(define-institution 
 soccer-server as 
 dialogic-framework = soccer-df 
 performative-structure = soccer-pf 
 norms =  ( free-kick  coach-messages … ) 

) 

186 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ISLANDER OMI: AMELI [Esteva et al., 2004]

Communication Layer 

S M 1 
... 

 ... 

AMELI 

Agents Layer 

Institution 
Specification 

(XML 
format) 

- 

  ... 

 ... 

S M m I M T M 1 T M k 

G 1 G n 

  ... 

G i 

A i A 1 A n 

- 

P
ub

lic
 

P
riv

at
e 

 ...  ... 

INSTITUTION 
MANAGER 

SCENE 
MANAGERS 

TRANSITION 
MANAGERS 

GOVERNORS 

From [Noriega 04] 

187 / 280



TheMoise Framework



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise Framework

Moise Organisation Modelling Language as Tag-based

language (issued from Moise [Hannoun et al., 2000],

Moise+ [Hübner et al., 2002a], MoiseInst [Gâteau et al., 2005])
OMI developped as an artefact-based working environment
(ORA4MAS [Hübner et al., 2009b] based on CArtAgO
nodes) (refactoring of S-Moise+ [Hübner et al., 2006] and

Synai [Gâteau et al., 2005])
dedicated organisational artefacts that provide general

services for the agents to work within an organisation

organisational agents that monitor and manage the

functioning of the organisation

Dedicated integration bridges for
Agents and Environment (c4Jason, c4Jadex

[Ricci et al., 2009c])

Environment and Organisation ( [Piunti et al., 2009a])

Agents and Organisation (J -Moise+ [Hübner et al., 2007]

Moise+ organisational events and actions integration within

Jason)
189 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise Framework as a Concrete Picture of OOP

op2

focus

makeArtifact

use
Artifacts
EA, OA

CArtAgO nodeAgent 
Platform(s)

Bridge
(i.e. c4Jason,

c4Jadex)
+

op1

body

body
enter

the room
book for a visit pay visit exit

book a visit 

scheme

m1

Hospital Reservation 
Desk Group

Patient Staff

1..10 1..1

recognize not paying

visitors

send fee

monitor

m2

Moise-OML OS

190 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise+ Modelling Dimensions

E 

Environment 

P 

OF Functional 
Specification 

Global goals, plans, 
Missions, schemas,  
preferences 

B 
Structural 
Specification 

Groups, links, roles 
Compatibilities, multiplicities 
inheritance 

OS 

Normative Specification 
Permissions, Obligations 
Allows agents autonomy! 

191 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise+ OML

OML for defining organisation specification and organisation

entity

Three independent dimensions [Hübner et al., 2007]
( well adapted for the reorganisation concerns):

Structural: Roles, Groups

Functional: Goals, Missions, Schemes

Normative: Norms (obligations, permissions, interdictions)

Abstract description of the organisation for

the designers
the agents

 J -Moise+ [Hübner et al., 2007]

the Organisation Management Infrastructure

 ORA4MAS [Hübner et al., 2009b]

192 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML global picture

norrmative 
groups 

roles 

structural 

schemas 

missions 

functional 

group 
instances role 

player 

schema 
instances 

mission 
player 

agents 

purpose 

Organisation  
specification 

Organisation 
Entity 

links norms 

193 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML Structural Specification

Specifies the structure of an MAS along three levels:

Individual with Role

Social with Link

Collective with Group

Components:

Role: label used to assign constraints on the behavior of

agents playing it

Link: relation between roles that directly constrains the

agents in their interaction with the other agents playing the

corresponding roles

Group: set of links, roles, compatibility relations used to

define a shared context for agents playing roles in it

194 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML Structural Specification

Defined with the tag structural-specification in the context

of an organisational-specification

One section for definition of all the roles participating to the

structure of the organisation (role-definitions tag)

Specification of the group including all sub-group

specifications (groupe-specification tag)

Example

¡organisational-specification

¡structural-specification¿

¡role-definitions¿ ... ¡/role-definitions¿

¡group-specification id=”xxx”¿

...

¡/group-specification¿

¡/structural-specification¿

...

¡/organisational-specification¿

195 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Role Specification

Role definition(role tag) in role-definitions section, is
composed of:

identifier of the role (id attribute of role tag)

inherited roles (extends tag) - by default, all roles inherit of

the soc role -

Example

¡role-definitions¿

¡role id=”player” /¿

¡role id=”coach” /¿

¡role id=”middle”¿ ¡extends role=”player”/¿ ¡/role¿

¡role id=”leader”¿ ¡extends role=”player”/¿ ¡/role¿

¡role id=”r1¿

¡extends role=”r2” /¿

¡extends role=”r3” /¿

¡/role¿

...

¡/role-definitions¿

196 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Group Specification

Group definition (group-specification tag) is composed of:
group identifier (id attribute of group-specification tag)

roles participating to this group and their cardinality (roles tag

and id, min, max), i.e. min. and max. number of agents that

should adopt the role in the group (default is 0 and unlimited)

links between roles of the group (link tag)

subgroups and their cardinality (sub-groups tag)

formation constraints on the components of the group

(formation-constraints)

Example

¡group-specification id=”team”¿

¡roles¿

¡role id=”coach” min=”1” max=”2”/¿ ...

¡/roles¿

¡links¿ ... ¡/links¿

¡sub-groups¿ ... ¡/sub-groups¿

¡formation-constraints¿ ... ¡/formation-constraints¿

¡/group-specification¿
197 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Link Specification

Link definition (link tag) included in the group definition is
composed of:

role identifiers (from, to)

type (type) with one of the following values: authority,

communication, acquaintance

scope of the link (scope): inter-group, intra-group

validity in sub-groups: if extends-sub-group set to true, the

link is also valid in all sub-groups (default false)

Example

¡link from=”coach”

to=”player”

type=”authority”

scope=”inter-group”

extends-sub-groups=”true” /¿

198 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Formation Constraint Specification

Formation constraints definition (formation-constraints tag)
in a group definition is composed of:

compatiblity constraints (compatibility tag) between roles

(from, to), with a scope, extends-sub-groups and directions

(bi-dir)

Example

¡formation-constraints¿

¡compatibility from=”middle”

to=”leader”

scope=”intra-group”

extends-sub-groups=”false”

bi-dir=”true”/¿

...

¡/formation-constraints¿

199 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Structural Specification Example (1)

Graphical representation of structural specification of Joj Team

200 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Structural Specification Example (2)

Graphical representation of structural specification of 3-5-2 Joj Team

201 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML Functional Specification

Specifies the expected behaviour of an MAS in terms of
goals along two levels:

Collective with Scheme

Individual with Mission

Components:
Goals:

Achievement goal (default type). Goals of this type should

be declared as satisfied by the agents committed to them,

when achieved

Maintenance goal. Goals of this type are not satisfied at a

precise moment but are pursued while the scheme is running.

The agents committed to them do not need to declare that

they are satisfied

Scheme: global goal decomposition tree assigned to a group

Any scheme has a root goal that is decomposed into subgoals

Missions: set of coherent goals assigned to roles within

norms

202 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Goal States

waiting

satisfiedimpossible

ready

waiting initial state

ready goal pre-conditions are satisfied &

scheme is well-formed

satisfied agents committed to the goal have achieved it

impossible the goal is impossible to be satisfied

203 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML Functional Specification

Defined with the tag functional-specification in the context

of an organisational-specification

Specification in sequence of the different schemes

participating to the expected behaviour of the organisation

Example

¡functional-specification¿

¡scheme id=”sideAttack” ¿

¡goal id=”dogoal” ¿ ... ¡/goal¿

¡mission id=”m1” min=”1” max=”5”¿

...

¡/mission¿

...

¡/scheme¿

...

¡/functional-specification¿

204 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Scheme Specification

Scheme definition (scheme tag) is composed of:
identifier of the scheme (id attribute of scheme tag)

the root goal of the scheme with the plan aiming at achieving

it (goal tag)

the set of missions structuring the scheme (mission tag)

Goal definition within a scheme (goal tag) is composed of:
an idenfier (id attribute of goal tag)

a type (achievement default or maintenance)

min. number of agents that must satisfy it (min) (default is

“all”)

optionally, an argument (argument tag) that must be

assigned to a value when the scheme is created

optionally a plan

Plan definition attached to a goal (plan tag) is composed of
one and only one operator (operator attribute of plan tag)

with sequence, choice, parallel as possible values

set of goal definitions (goal tag ) concerned by the operator

205 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Scheme Specification Example

¡scheme id=”sideAttack”¿

¡goal id=”scoreGoal” min=”1” ¿

¡plan operator=”sequence”¿

¡goal id=”g1” min=”1” ds=”get the ball” /¿

¡goal id=”g2” min=”3” ds=”to be well placed”¿

¡plan operator=”parallel”¿

¡goal id=”g7” min=”1” ds=”go toward the opponent’s field” /¿

¡goal id=”g8” min=”1” ds=”be placed in the middle field” /¿

¡goal id=”g9” min=”1” ds=”be placed in the opponent’s goal area” /¿

¡/plan¿

¡/goal¿

¡goal id=”g3” min=”1” ds=”kick the ball to the m2Ag” ¿

¡argument id=”M2Ag” /¿

¡/goal¿

¡goal id=”g4” min=”1” ds=”go to the opponent’s back line” /¿

¡goal id=”g5” min=”1” ds=”kick the ball to the goal area” /¿

¡goal id=”g6” min=”1” ds=”shot at the opponent’s goal” /¿

¡/plan¿

¡/goal¿

...
206 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Mission Specification

Mission definition (mission tag) in the context of a scheme
definition, is composed of:

identifier of the mission (id attribute of mission tag)

cardinality of the mission min (0 is default), max (unlimited is

default) specifying the number of agents that can be

committed to the mission

the set of goal identifiers (goal tag) that belong to the

mission

Example

¡scheme id=”sideAttack”¿

... the goals ...

¡mission id=”m1” min=”1” max=”1”¿

¡goal id=”scoreGoal” /¿ ¡goal id=”g1” /¿

¡goal id=”g3” /¿ ...

¡/mission¿

...

¡/scheme¿

207 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Functional Specification Example (1)

Graphical representation of social scheme for joj team

208 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Functional Specification Example (2)

score a goal

m1

go towards the opponent field

m1, m2, m3

get the ball

be placed in the middle field 

be placed in the opponent goal area
kick the ball to (agent committed to m2)

go to the opponent back line

kick the ball to the goal area

shot at the opponent’s goal

m1

m1

m2 m2

m2

m3

m3

Key

goal
missions

success rate parallelismchoicesequence

Scheme

Organizational Entity

Lucio

Cafu

Rivaldo

m1

m2

m3

Graphical representation of social scheme “side attack” for joj team

209 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML Normative Specification

Explicit relation between the functional and structural

specifications

Permissions and obligations to commit to missions in the

context of a role

Makes explicit the normative dimension of a role

210 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Moise OML Normative Specification

Defined with the tag normative-specification in the context

of an organisational-specification

Specification in sequence of the different norms participating

to the governance of the organisation

Example

¡normative-specification¿

¡norm id=”n1” ... /¿

...

¡norm id=”...” ... /¿

¡/normative-specification¿

211 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Norm Specification

Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:

the identifier of the norm (id)

the type of the norm (type) with obligation, permission as

possible values
optionally a condition of activation (condition) with the
following possible expressions:

checking of properties of the organisation (e.g.

#role compatibility, #mission cardinality, #role cardinality,

#goal non compliance)

 unregimentation of organisation properties!!!

(un)fulfillment of an obligation stated in a particular norm

(unfulfilled, fulfilled)

the identifier of the role (role) on which the role is applied

the identifier of the mission (mission) concerned by the norm

optionally a time constraint (time-constraint)

212 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Norm Specification – example

role deontic mission TTF

back obliged m1 get the ball, go ... 1 minute

left obliged m2 be placed at ..., kick ... 3 minute

right obliged m2 1 day

attacker obliged m3 kick to the goal, ... 30 seconds

¡norm id = ”n1” type=”obligation”

role=”back” mission=”m1” time-constraint=”1 minute”/¿

...

¡norm id = ”n4” type=”obligation”

condition=”unfulfilled(obligation(˙,n2,˙,˙))”

role=”coach” mission=”ms” time-constraint=”3 hour”/¿

...

213 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisation Entity Dynamics

1 Organisation is created (by the agents)

instances of groups

instances of schemes

2 Agents enter into groups adopting roles

3 Groups become responsible for schemes

Agents from the group are then obliged to commit to

missions in the scheme

4 Agents commit to missions

5 Agents fulfil mission’s goals

6 Agents leave schemes and groups

7 Schemes and groups instances are destroyed

214 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisation management infrastructure (OMI)

Responsibility

Managing – coordination, regulation – the agents’ execution

within organisation defined in an organisational specification

Organisation
Program

OMI

AgentAgentAgentAgent

(e.g. MadKit, AMELI, S-Moise+, ...)

215 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational artifacts in ORA4MAS

System

Agent

Group
Artifact

Scheme
Artifact

Scheme
Artifact

Agent

Agent

Agent

Agent

Agent

based on A&A and

Moise

agents create and handle

organisational artifacts

artifacts in charge of

regimentations,

detection and evaluation

of norms compliance

agents are in charge of

decisions about

sanctions

distributed solution

216 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ORA4MAS – GroupBoard artifact

GroupBoard

Specification

Players

Schemes

adoptRole

leaveRole

addScheme

removeScheme

Operations:

adoptRole(role): the agent

executing this operation

tries to adopt a role in the

group

leaveRole(role)

addScheme(schid): the

group starts to be

responsible for the scheme

managed by the

SchemeBoard schId

removeScheme(schid)

217 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ORA4MAS – GroupBoard artifact

GroupBoard

Specification

Players

Schemes

adoptRole

leaveRole

addScheme

removeScheme

Observable Properties:

specification: the

specification of the group in

the OS (an object of class

moise.os.ss.Group)

players: a list of agents

playing roles in the group.

Each element of the list is a

pair (agent x role)

schemes: a list of scheme

identifiers that the group is

responsible for

218 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ORA4MAS – SchemeBoard artifact

SchemeBoard

Specification

Players

Goals

Obligations

commitMission

leaveMission

goalAchieved

setGoalArgument

Groups

Operations:

commitMission(mission)

and leaveMission:

operations to “enter” and

“leave” the scheme

goalAchieved(goal): defines

that some goal is achieved

by the agent performing the

operation

setGoalArgument(goal,

argument, value): defines

the value of some goal’s

argument

219 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

ORA4MAS – SchemeBoard artifact

SchemeBoard

Specification

Players

Goals

Obligations

commitMission

leaveMission

goalAchieved

setGoalArgument

Groups

Observable Properties:

specification: the

specification of the scheme

in the OS

groups: a list of groups

responsible for the scheme

players: a list of agents

committed to the scheme.

Each element of the list is a

pair (agent, mission)

goals: a list with the

current state of the goals

obligations: list of

obligations currently active

in the scheme

220 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational Artifact Implementation

Organisational artifacts are programmed with a Normative

Programming Language (NPL) [Hübner et al., 2010]
The NPL norms have

an activation condition

a consequence

two kinds of consequences are considered
regimentations

obligations

Example (norm)

norm n1: plays(A,writer,G) -¿ fail.

or

norm n1: plays(A,writer,G)

-¿ obligation(A,n1,plays(A,editor,G),

‘now + 3 min‘).

221 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Obligations life cycle

d > nowactive

fulfilled

unfulfilled

inactive

g

¬ ø

ø

φ: activation condition (e.g. play a role)

g: the obligation (e.g. commit to a mission)

222 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

OS in Moise OML to NOPL translation

Example (role cardinality norm – regimentation)

group˙role(writer,1,5).

norm ncar: group˙role(R,˙,M) &

rplayers(R,G,V) & V ¿ M

-¿ fail(role˙cardinality(R,G,V,M)).

Example (role cardinality norm – agent decision)

norm ncar: group˙role(R,˙,M) &

rplayers(R,G,V) & V ¿ M &

plays(E,editor,G)

-¿ obligation(E,ncar,committed(E,ms,˙),

‘now + 1 hour‘).

223 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational Artifact Architecture

Organisation
Artifact

NPL  Interpreter

NOPL
Program

Group
State

NPL
Engine

Obligations
State

Organisation 
Specificatoin

translates

Signals (o = obligation(to whom, reason, what, deadline)):

obl created(o): the obligation o is created

obl fulfilled(o): the obligation o is fulfilled

obl unfulfilled(o): the obligation o is unfulfilled

obl inactive(o): the obligation o is inactive

norm failure(f ): the failure f has happened

224 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Environment integration

Organisational Artifacts enable organisation and environment

integration

Embodied organisation [Piunti et al., 2009a]

Env. Artifact Org. Artifact
count-as

enact

count-as

status: ongoing work

225 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Environment integration: constitutive rules

Count-As rule

An event occurring on an artifact, in a particular context, may

count-as an institutional event

transforms the events created in the working environment

into activation of an organisational operation

 indirect automatic updating of the organisation

Enact rule

An event produced on an organisational artifact, in a specific

institutional context, may “enact” change and updating of the

working environment (i.e., to promote equilibrium, avoid

undesiderable states)

Installing automated control on the working environment

Even without the intervention of organisational/staff agents

(regimenting actions on physical artifacts, enforcing

sanctions, ...) 226 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Agent integration

Agents can interact with organisational artifacts as with

ordinary artifacts by perception and action

 Any Agent Programming Language integrated with

CArtAgO can use organisational artifacts

Agent integration provides some “internal” tools for the agents

to simplify their interaction with the organisation:

maintenance of a local copy of the organisational state

production of organisational events

provision of organisational actions

227 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

J -Moise: Jason + Moise

Agents are programmed with Jason

 BDI agents (reactive planning) – suitable abstraction level

The programmer has the possibility to express sophisticated

recipes for adopting roles, committing to missions,

fulfilling/violating norms, ...

Organisational information is made accessible in the mental

state of the agent as beliefs

Integration is totally independent of the

distribution/communication layer

228 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

J -Moise: Jason + Moise– General view

Jason-CArtAgo Agent

Plan 
Library

Belief 
Base

Organisational Workspace (CArtAgO)

Intentions

J-Moise+
Organisation	 Integration	 mechanism

229 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational actions in Jason I

For groups:

create group

remove group

Example
...

.my˙name(Me);

join˙workspace(ora4mas,””,user˙id(Me));

create˙group(

mypaper, // group identification

”wp-os.xml”, // specification file

wpgroup, // group type

false, // monitoring scheme

true); // GUI

adopt˙role(editor,mypaper);

230 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational actions in Jason II

For schemes:

create scheme

add responsible group

remove scheme

goal achieved

Example

create˙scheme(

s45,

”wp-os.xml”,

writePaperSch,

false,

true);

add˙responsible˙group(s45,mypaper);

commit˙mission(mManager, S).

231 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational actions in Jason III

For roles:

adopt role

remove role

For missions:

commit mission

remove mission

Those actions usually are executed under regimentation (to

avoid an inconsistent organisational state)
e.g. the adoption of role is constrained by

the cardinality of the role in the group

the compatibilities of the roles played by the agent

232 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational perception

When an agent focus on an Organisational Artifact, the

observable properties (Java objects) are translated to beliefs with

the following predicates:

group specification

scheme specification

plays(agent, role, group)

responsible group(group, scheme)

commitment(agent, mission, scheme)

goal(scheme, goal, list of committed agents, list of agent

that achieved the goal, state of the goal)

obligation(agent,norm,goal,dead line)

233 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Organisational perception – example

234 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Handling organisational events in Jason

Whenever something changes in the organisation, the agent

architecture updates the agent belief base accordingly producing

events (belief update from perception)

Example (new agent entered the group)

+play(Ag,boss,GId) ¡- .send(Ag,tell,hello).

Example (change in goal state)

+goal˙state(Scheme,wsecs,˙,˙,satisfied)

: .my˙name(Me) & commitment(Me,mCol,Scheme)

¡- leave˙mission(mColaborator,Scheme).

Example (signals)

+norm˙failure(N) ¡- .print(”norm failure event: ”, N).

235 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Typical plans for obligations

Example

+obligation(Ag,Norm,committed(Ag,Mission,Scheme),DeadLine)

: .my˙name(Ag)

¡- .print(”I am obliged to commit to ”,Mission);

commit˙mission(Mission,Scheme).

+obligation(Ag,Norm,achieved(Sch,Goal,Ag),DeadLine)

: .my˙name(Ag)

¡- .print(”I am obliged to achieve goal ”,Goal);

!Goal[scheme(Sch)];

goal˙achieved(Goal,Sch).

+obligation(Ag,Norm,What,DeadLine)

: .my˙name(Ag)

¡- .print(”I am obliged to ”,What,

”, but I don’t know what to do!”).

236 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Summary – Moise

Ensures that the agents follow some of the constraints

specified for the organisation

Helps the agents to work together

The organisation is interpreted at runtime, it is not

hardwired in the agents code

The agents ‘handle’ the organisation (i.e. their artifacts)

It is suitable for open systems as no specific agent

architecture is required

All available as open source at

http://moise.souceforge.net

237 / 280

http://moise.souceforge.net


2OPL: Organisation Oriented
Programming Language



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

2APL Syntax: Programming Multi-Agent System

Example (Exploring World)

¡apaplmas¿

¡agent name=”w1” file=”worker.2apl”/¿

¡agent name=”w2” file=”worker.2apl”/¿

¡agent name=”m” file=”manager.2apl”/¿

¡environment name=”blockworld” file=”blockworld.jar”/¿

¡/apaplmas¿

Coordination is needed to achieve the overall objectives of

multi-agent systems.
Existing coordination mechanisms

Coordination artifacts and languages defined in terms of

low-level coordination concepts such as synchronization,

shared-space, and channels, e.g., REO and Linda.

Organizational models, normative systems, and electronic

institutions defined in terms of social and organizational

concepts, e.g. Moise+/ORG4MAS and ISLANDER/AMELI.

239 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Programming Normative Organisations

The aim is to design and develop a programming language to

support the implementation of coordination mechanisms in terms

of normative concepts.

Agents

specified in a programming language, for example, 2APL.

perform external actions.

internal architecture unknown to organization.

Organization

determines effect of external actions.

normatively assesses effect of agents’ actions (monitoring).

sanctions agents’ wrongdoings (enforcement).

prevents ending up in really bad states (regimentation).

240 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Programming Normative Organisations

Example

Example: Simple railway simulation

simple railway station

passengers travelling by train

rules of conduct (e.g. having a ticket while on the train)

Passengers are agents that can:

embark the train

enter the platform

buy a ticket

241 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Programming Language for Organisations (1)

Programming a normative multi-agent organization is to specify:

the initial state of organization by brute facts, e.g.,

{-at platform, -in train, -ticket}

the effects of actions, e.g.,
{-ticket} buy ticket {ticket}
{at platform, -in train} embark {-at platform, in train}

the norms through counts-as rules, e.g.,
{at platform , -ticket} ⇒ {violticket}
{in train , -ticket} ⇒ {viol⊥}

possible sanctions for agent’s through sanction rules, e.g.,

{violticket} ⇒ {fined10}

242 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Programming Language for Organisations (2)

Example (Train Station)

Facts:

– -at˙platform , -in˙train , -ticket ˝

Effects:

– -at˙platform ˝ enter – at˙platform ˝,

– -ticket ˝ buy˙ticket – ticket ˝,

– at˙platform , -in˙train ˝

embark

– -at˙platform, in˙train ˝

Counts˙as rules:

– at˙platform , -ticket ˝ =¿ – viol˙ticket ˝,

– in˙train , -ticket ˝ =¿ – viol˙—˙ ˝

Sanction˙rules:

– viol˙ticket ˝ =¿ – fined˙10 ˝

243 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Control Cycle = Monitoring + Enforcement

Repeat

Take the performed action.

Realize its effect by means of its specification.

Evaluate the state by applying Counts-as rules.

Evaluate the state by applying Sanction-as rules.

244 / 280



Introduction AOP EOP OOP Conclusion Introduction OOP Moise 2OPL

Conclusion and Future Work

Norms enforce/regiment states.

Choreography language for action orchestration.

Programming roles, their dynamics, and organisational

structures.

Adding explicit norms: Obligations, Prohibition, and

Permissions.

Adding deadlines to norms.

Programming constructs for norm change.

Logics for reasoning about organisation programs.

245 / 280



Conclusions



Introduction AOP EOP OOP Conclusion

Putting the Pieces Together

BELIEFS
GOALS
PLANS

INTERNAL
EVENTS

ACTIONSPERCEPTIONS

AGENTS

MISSIONS

ROLES

DEONTIC RELATIONS

GROUPS

NORMS

SANCTIONS
REWARDS

ORGANISATIONS

RESOURCES

LEGACY

SERVICES OBJECTS

ENVIRONMENTS

COMMUNICATION
LANGUAGES

INTERACTION
PROCOLS

SPEECH 
ACTS

INTERACTIONS

MOISE 
Framework

JASON 
Agent Prog. 
Language

JADE 
Platform

CarTaGO 
Platform?

247 / 280



Introduction AOP EOP OOP Conclusion

Exploiting Orthogonality

Treating AOP & EP & OOP as orthogonal dimensions
improving separation of concerns

using the best abstraction level and tools to tackle the

specific dimensions, avoiding design pitfalls, such as using

agents to implement either non-autonomous entities (e.g., a

blackboard agent) or a collection of autonomous entities

(group agent)

promoting openness and heterogeneity

E.g., heterogeneous agents working in the same organisation,

heterogeneous agents working in the same environment, the

same agent working in different and heterogeneous

organisations, the same agent working in different

heterogeneous environments

Outcome from a programming point of view

code more clean and understandable

improving modularity, extensibility, reusability

248 / 280



Introduction AOP EOP OOP Conclusion

Beyond Orthogonality: Synergetic Integration

Exploiting one dimension to effectively design and program
also aspects related to the other dimensions

for instance, using the environment to design, implement and

represent at runtime the organisation infrastructure

Designing and implementing MAS behaviours that are based
on explicit bindings between the different dimensions

for instance, exploiting events occurring in the environment to

represent events that have an effect at the institutional or

social level

249 / 280



Introduction AOP EOP OOP Conclusion

Exploiting Synergy between the A/E Dimensions

Mapping

agent actions into environment operations (e.g. CArtAgO)

environment observable state/events into agent beliefs

Outcome

agents with dynamic action repertoire
uniformly implementing any mechanisms (e.g. coordination
mechanism) in terms of actions/percepts

no need to extend agents with special purpose primitives

exploiting a new type of agent modularity, based on

externalization [Ricci et al., 2009a]

250 / 280



Introduction AOP EOP OOP Conclusion

Exploiting Synergy on A/O Integration

Normative deliberative agents

possibility to define mechanisms for agents to evolve within

an organisation/several organisations

possibility to define proper mechanisms for deliberating on the

internalisation/adoption/violation of norms

Reorganisation, adaptation of the organisation

possibility to define proper mechanisms for

diagnosing/evaluating/refining/defining organisations

”Deliberative” Organisations

possibility to define dedicated organisational strategies for the

regulation/adaptation of the organisation behaviour

(organisational agents)

251 / 280



Introduction AOP EOP OOP Conclusion

Exploiting Synergy between the E/O Dimensions

Grounding the organisation infrastructure

implemented using environment abstractions

... that agents perceive then as first-class entities of their

world

Mapping

organisational state reified by the environment computational

state

organisational actions/perceptions reified by actions/percepts

on the environment state

organisational functionalities encapsulated by suitably

designed environment abstractions

Outcome

“the power is back to agents” [Hübner et al., 2009c]

by perceiving and acting upon that environment, agents can

reason and dynamically adapt the organisation infrastructure

itself

252 / 280



Introduction AOP EOP OOP Conclusion

An Example: ORA4MAS [Hübner et al., 2009c]

Implementing organisational infrastructures based on Moise

organisational model by exploiting CArtAgO artifact-based

environments

Outcome on the agent side (e.g. Jason)
no need to introduce specific Moise primitives

mapped directly onto artifact operations and so

automatically part of agents’ action repertoire

modularising and encapsulating Moise functionalities into a
set of properly designed artifacts

that constitute – both for the MAS engineers but also for

agents – the organisation infrastructure

253 / 280



Introduction AOP EOP OOP Conclusion

E/O Synergy Example: Implementing Regimentation

Exploiting the environment role of enabler and mediator of
agent interaction

by providing actions and generating percepts

−→ natural place where to embed and enforce
organisational rules and norms

affecting action execution behaviour and percepts generation

Examples
simple: a game-board artifact in an artifact-based
environment

providing agents actions to make moves

encapsulating and enforcing the rules of the game

complex: fully-fledged institutions

reified into properly programmed environments

254 / 280



Introduction AOP EOP OOP Conclusion

E/O Synergy Example: Implementing Constitutive Rules

Exploiting the environment to create, represent, and manage

dependencies and rules that are meaningful at the

organisational level

A main example: implementing constitutive
rules [Searle, 1997]

events occurring in concrete environments conveyed as social

and institutional events

typically represented in the form X counts as Y in C

an example: reaching the environment state S counts as

achieving the organisational goal G

The integration E/O allows for naturally design and
implementation of these kinds of rules

without adding any further concepts wrt the ones belonging

to the E/O dimensions

255 / 280



Introduction AOP EOP OOP Conclusion

Ongoing and Related Research

Unifying agents, environments and organisation perspectives

Volcano platform [Ricordel and Demazeau, 2002]

MASK platform [Occello et al., 2004]

MASQ [Stratulat et al., 2009], extending AGRE and

AGREEN

Embodied organisations [Piunti, 2010]

Situated E-Institutions [Campos et al., 2009]

Normative programming and

infrastructures [Hübner et al., 2009a,

Tinnemeier et al., 2009, Dastani et al., 2009]

256 / 280



Introduction AOP EOP OOP Conclusion

Bibliography I

Baldoni, M., Bentahar, J., van Riemsdijk, M. B., and Lloyd, J., editors (2010).

Declarative Agent Languages and Technologies VII, 7th International

Workshop, DALT 2009, Budapest, Hungary, May 11, 2009. Revised Selected

and Invited Papers, volume 5948 of Lecture Notes in Computer Science.

Springer.

Baldoni, M. and Endriss, U., editors (2006).

Declarative Agent Languages and Technologies IV, 4th International Workshop,

DALT 2006, Hakodate, Japan, May 8, 2006, Selected, Revised and Invited

Papers, volume 4327 of Lecture Notes in Computer Science. Springer.

Baldoni, M., Endriss, U., Omicini, A., and Torroni, P., editors (2006).

Declarative Agent Languages and Technologies III, Third International

Workshop, DALT 2005, Utrecht, The Netherlands, July 25, 2005, Selected and

Revised Papers, volume 3904 of Lecture Notes in Computer Science. Springer.

Baldoni, M., Son, T. C., van Riemsdijk, M. B., and Winikoff, M., editors

(2008).

Declarative Agent Languages and Technologies V, 5th International Workshop,

DALT 2007, Honolulu, HI, USA, May 14, 2007, Revised Selected and Invited

Papers, volume 4897 of Lecture Notes in Computer Science. Springer.

257 / 280



Introduction AOP EOP OOP Conclusion

Bibliography II

Baldoni, M., Son, T. C., van Riemsdijk, M. B., and Winikoff, M., editors

(2009).

Declarative Agent Languages and Technologies VI, 6th International Workshop,

DALT 2008, Estoril, Portugal, May 12, 2008, Revised Selected and Invited

Papers, volume 5397 of Lecture Notes in Computer Science. Springer.

Behrens, T., Bordini, R., Braubach, L., Dastani, M., Dix, J., Hindriks, K.,

Hbner, J., and Pokahr, A. (2010).

An interface for agent-environment interaction.

In In Proceedings of International Workshop on Programming Multi-Agent

Systems (ProMAS-8).

Bernoux, P. (1985).

La sociologie des organisations.

Seuil, 3ème edition.

Bordini, R., Hübner, J., and Wooldridge, M. (2007a).

Programming Multi-Agent Systems in AgentSpeak Using Jason.

Wiley-Interscience.

258 / 280



Introduction AOP EOP OOP Conclusion

Bibliography III

Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A. E.,

Gómez-Sanz, J. J., Leite, J., O’Hare, G. M. P., Pokahr, A., and Ricci, A.

(2006a).

A survey of programming languages and platforms for multi-agent systems.

Informatica (Slovenia), 30(1):33–44.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors

(2005a).

Multi-Agent Programming: Languages, Platforms and Applications, volume 15

of Multiagent Systems, Artificial Societies, and Simulated Organizations.

Springer.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors

(2005b).

Programming Multi-Agent Systems, Second International Workshop ProMAS

2004, New York, NY, USA, July 20, 2004 Selected Revised and Invited Papers,

volume 3346 of Lecture Notes in Computer Science. Springer.

259 / 280



Introduction AOP EOP OOP Conclusion

Bibliography IV

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors

(2006b).

Programming Multi-Agent Systems, Third International Workshop, ProMAS

2005, Utrecht, The Netherlands, July 26, 2005, Revised and Invited Papers,

volume 3862 of Lecture Notes in Computer Science. Springer.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors

(2007b).

Programming Multi-Agent Systems, 4th International Workshop, ProMAS

2006, Hakodate, Japan, May 9, 2006, Revised and Invited Papers, volume 4411

of Lecture Notes in Computer Science. Springer.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors

(2009).

Multi-Agent Programming: Languages, Tools and Applications.

Springer.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007c).

Programming Multi-Agent Systems in AgentSpeak Using Jason.

Wiley Series in Agent Technology. John Wiley & Sons.

260 / 280



Introduction AOP EOP OOP Conclusion

Bibliography V

Bromuri, S. and Stathis, K. (2008).

Situating Cognitive Agents in GOLEM.

In Weyns, D., Brueckner, S., and Demazeau, Y., editors, Engineering

Environment-Mediated Multi-Agent Systems, volume 5049 of LNCS, pages

115–134. Springer Berlin / Heidelberg.

Campos, J., López-Sánchez, M., Rodriguez-Aguilar, J. A., and Esteva, M.

(2009).

Formalising situatedness and adaptation in electronic institutions.

In Coordination, Organizations, Institutions and Norms in Agent Systems IV,

volume 5428/2009 of LNCS. Springer Berlin / Heidelberg.

Carabelea, C. (2007).

Reasoning about autonomy in open multi-agent systems - an approach based

on the social power theory.

in french, ENS Mines Saint-Etienne.

Dastani, M. (2008a).

2apl: a practical agent programming language.

Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

261 / 280



Introduction AOP EOP OOP Conclusion

Bibliography VI

Dastani, M. (2008b).

2APL: a practical agent programming language.

Autonomous Agent and Multi-Agent Systems, 16(3):214–248.

Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors (2004).

Programming Multi-Agent Systems, First International Workshop, PROMAS

2003, Melbourne, Australia, July 15, 2003, Selected Revised and Invited

Papers, volume 3067 of Lecture Notes in Computer Science. Springer.

Dastani, M., Fallah-Seghrouchni, A. E., Leite, J., and Torroni, P., editors

(2008a).

Languages, Methodologies and Development Tools for Multi-Agent Systems,

First International Workshop, LADS 2007, Durham, UK, September 4-6, 2007.

Revised Selected Papers, volume 5118 of Lecture Notes in Computer Science.

Springer.

Dastani, M., Fallah-Seghrouchni, A. E., Leite, J., and Torroni, P., editors

(2010).

Languages, Methodologies, and Development Tools for Multi-Agent Systems,

Second International Workshop, LADS 2009, Torino, Italy, September 7-9,

2009, Revised Selected Papers, volume 6039 of Lecture Notes in Computer

Science. Springer.

262 / 280



Introduction AOP EOP OOP Conclusion

Bibliography VII

Dastani, M., Fallah-Seghrouchni, A. E., Ricci, A., and Winikoff, M., editors

(2008b).

Programming Multi-Agent Systems, 5th International Workshop, ProMAS

2007, Honolulu, HI, USA, May 15, 2007, Revised and Invited Papers, volume

4908 of Lecture Notes in Computer Science. Springer.

Dastani, M., Tinnemeier, N., and Meyer, J.-J. C. (2009).

A programming language for normative multi-agent systems.

In Multi-Agent Systems: Semantics and Dynamics of Organizational Models.

IGI-Global.

Esteva, M., Rodriguez-Aguiar, J. A., Sierra, C., Garcia, P., and Arcos, J. L.

(2001).

On the formal specification of electronic institutions.

In Dignum, F. and Sierra, C., editors, Proceedings of the Agent-mediated

Electronic Commerce, LNAI 1191, pages 126–147, Berlin. Springer.

Esteva, M., Rodŕıguez-Aguilar, J. A., Rosell, B., and L., J. (2004).

AMELI: An agent-based middleware for electronic institutions.

In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors, Proc. of

the 3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems

(AAMAS’04), pages 236–243, New York, USA. ACM.

263 / 280



Introduction AOP EOP OOP Conclusion

Bibliography VIII

Ferber, J. and Gutknecht, O. (1998).

A meta-model for the analysis and design of organizations in multi-agents

systems.

In Demazeau, Y., editor, Proceedings of the 3rd International Conference on

Multi-Agent Systems (ICMAS’98), pages 128–135. IEEE Press.

Fisher, M. (2005).

Metatem: The story so far.

In [Bordini et al., 2006b], pages 3–22.

Fisher, M., Bordini, R. H., Hirsch, B., and Torroni, P. (2007).

Computational logics and agents: A road map of current technologies and

future trends.

Computational Intelligence, 23(1):61–91.

Gasser, L. (2001).

Organizations in multi-agent systems.

In Pre-Proceeding of the 10th European Worshop on Modeling Autonomous

Agents in a Multi-Agent World (MAAMAW’2001), Annecy.

264 / 280



Introduction AOP EOP OOP Conclusion

Bibliography IX

Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2005).

Moiseinst: An organizational model for specifying rights and duties of

autonomous agents.

In Third European Workshop on Multi-Agent Systems (EUMAS 2005), pages

484–485, Brussels Belgium.

Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (2000).

Congolog, a concurrent programming language based on the situation calculus.

Artif. Intell., 121(1-2):109–169.

Gutknecht, O. and Ferber, J. (2000a).

The MADKIT agent platform architecture.

In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

Gutknecht, O. and Ferber, J. (2000b).

The MadKit agent platform architecture.

In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

265 / 280



Introduction AOP EOP OOP Conclusion

Bibliography X

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000).

Moise: An organizational model for multi-agent systems.

In Monard, M. C. and Sichman, J. S., editors, Proceedings of the International

Joint Conference, 7th Ibero-American Conference on AI, 15th Brazilian

Symposium on AI (IBERAMIA/SBIA’2000), Atibaia, SP, Brazil, November

2000, LNAI 1952, pages 152–161, Berlin. Springer.

Hindriks, K. V. (2009).

Programming rational agents in GOAL.

In [Bordini et al., 2009], pages 119–157.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (1997).

Formal semantics for an abstract agent programming language.

In Singh, M. P., Rao, A. S., and Wooldridge, M., editors, ATAL, volume 1365

of Lecture Notes in Computer Science, pages 215–229. Springer.

Hindriks, K. V., Pokahr, A., and Sardiña, S., editors (2009).

Programming Multi-Agent Systems, 6th International Workshop, ProMAS

2008, Estoril, Portugal, May 13, 2008. Revised Invited and Selected Papers,

volume 5442 of Lecture Notes in Computer Science. Springer.

266 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XI

Hübner, J. F., Boissier, O., and Bordini, R. H. (2009a).

Normative programming for organisation management infrastructures.

In MALLOW Workshop on Coordination, Organization, Institutions and Norms

in Agent Systems in Online Communities (COIN-MALLOW 2009).

Hübner, J. F., Boissier, O., and Bordini, R. H. (2010).

A normative organisation programming language for organisation management

infrastructures.

In et al., J. P., editor, Coordination, Organizations, Institutions and Norms in

Agent Systems V, volume 6069 of LNAI, pages 114–129. Springer.

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009b).

Instrumenting Multi-Agent Organisations with Organisational Artifacts and

Agents.

Journal of Autonomous Agents and Multi-Agent Systems.

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009c).

Instrumenting multi-agent organisations with organisational artifacts and

agents: “Giving the organisational power back to the agents”.

Autonomous Agents and Multi-Agent Systems.

DOI-URL: http://dx.doi.org/10.1007/s10458-009-9084-y.

267 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XII

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002a).

A model for the structural, functional, and deontic specification of

organizations in multiagent systems.

In Bittencourt, G. and Ramalho, G. L., editors, Proceedings of the 16th

Brazilian Symposium on Artificial Intelligence (SBIA’02), volume 2507 of LNAI,

pages 118–128, Berlin. Springer.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002b).

MOISE+: Towards a Structural, Functional, and Deontic Model for MAS

Organization.

In Castelfranchi, C. and Johnson, W. L., editors, Proc. of International Joint

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-02),

pages 501–502. ACM Press.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2006).

S-MOISE+: A middleware for developing organised multi-agent systems.

In Boissier, O., Dignum, V., Matson, E., and Sichman, J. S., editors,

Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems,

volume 3913 of LNCS, pages 64–78. Springer.

268 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XIII

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007).

Developing Organised Multi-Agent Systems Using the MOISE+ Model:

Programming Issues at the System and Agent Levels.

Agent-Oriented Software Engineering, 1(3/4):370–395.

Leite, J. A., Omicini, A., Sterling, L., and Torroni, P., editors (2004).

Declarative Agent Languages and Technologies, First International Workshop,

DALT 2003, Melbourne, Australia, July 15, 2003, Revised Selected and Invited

Papers, volume 2990 of Lecture Notes in Computer Science. Springer.

Leite, J. A., Omicini, A., Torroni, P., and Yolum, P., editors (2005).

Declarative Agent Languages and Technologies II, Second International

Workshop, DALT 2004, New York, NY, USA, July 19, 2004, Revised Selected

Papers, volume 3476 of Lecture Notes in Computer Science. Springer.

Malone, T. W. (1999).

Tools for inventing organizations: Toward a handbook of organizational

process.

Management Science, 45(3):425–443.

269 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XIV

Molesini, A., Omicini, A., Denti, E., and Ricci, A. (2005).

SODA: A roadmap to artefacts.

In Dikenelli, O., Gleizes, M.-P., and Ricci, A., editors, 6th International

Workshop “Engineering Societies in the Agents World” (ESAW’05), pages

239–252, Kuşadası, Aydın, Turkey. Ege University.

Morin, E. (1977).

La méthode (1) : la nature de la nature.

Points Seuil.

Occello, M., Baeijs, C., Demazeau, Y., and Koning, J.-L. (2004).

MASK: An AEIO toolbox to design and build multi-agent systems.

In et al., C., editor, Knowledge Engineering and Agent Technology, IOS Series

on Frontiers in AI and Applications. IOS press, Amsterdam.

Okuyama, F. Y., Bordini, R. H., and da Rocha Costa, A. C. (2008).

A distributed normative infrastructure for situated multi-agent organisations.

In [Baldoni et al., 2009], pages 29–46.

270 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XV

Oliva, E., McBurney, P., Omicini, A., and Viroli, M. (2010).

Argumentation and artifacts for negotiation support.

International Journal of Artificial Intelligence, 4(S10):90–117.

Special Issue on Negotiation and Argumentation in Artificial Intelligence.

Omicini, A., Ricci, A., and Viroli, M. (2008).

Artifacts in the A&A meta-model for multi-agent systems.

Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).

Coordination artifacts: Environment-based coordination for intelligent agents.

In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent

Systems (AAMAS’04), volume 1, pages 286–293, New York, USA. ACM.

Ossowski, S. (1999).

Co-ordination in Artificial Agent Societies: Social Structures and Its

Implications for Autonomous Problem-Solving Agents, volume 1535 of LNAI.

Springer.

271 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XVI

Piunti, M. (2010).

Embodied organizations: a unifying perspective in programming agents,

organizations and environments.

PhD thesis.

Piunti, M. and Ricci, A. (2009).

Cognitive artifacts for intelligent agents in mas: Exploiting relevant information

residing in environments.

In Knowledge Representation for Agents and Multi-Agent Systems (KRAMAS

2008), volume 5605 of LNAI. Springer.

Piunti, M., Ricci, A., Boissier, O., and Hubner, J. (2009a).

Embodying organisations in multi-agent work environments.

In IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology (WI-IAT 2009), Milan, Italy.

Piunti, M., Ricci, A., Boissier, O., and Hübner, J. F. (2009b).

Embodied organisations in mas environments.

In Braubach, L., van der Hoek, W., Petta, P., and Pokahr, A., editors,

Proceedings of 7th German conference on Multi-Agent System Technologies

(MATES 09), Hamburg, Germany, September 9-11, volume 5774 of LNCS,

pages 115–127. Springer.

272 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XVII

Piunti, M., Ricci, A., Braubach, L., and Pokahr, A. (2008).

Goal-directed interactions in artifact-based mas: Jadex agents playing in

CARTAGO environments.

In Proc. of the 2008 IEEE/WIC/ACM Int. Conf. on Web Intelligence and

Intelligent Agent Technology (IAT’08), volume 2. IEEE Computer Society.

Platon, E., Mamei, M., Sabouret, N., Honiden, S., and Parunak, H. V. (2007).

Mechanisms for environments in multi-agent systems: Survey and

opportunities.

Autonomous Agents and Multi-Agent Systems, 14(1):31–47.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).

Jadex: A bdi reasoning engine.

In [Bordini et al., 2005a], pages 149–174.

Pynadath, D. V. and Tambe, M. (2003).

An automated teamwork infrastructure for heterogeneous software agents and

humans.

Autonomous Agents and Multi-Agent Systems, 7(1-2):71–100.

273 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XVIII

Rao, A. S. (1996).

Agentspeak(l): Bdi agents speak out in a logical computable language.

In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume 1038 of

Lecture Notes in Computer Science, pages 42–55. Springer.

Ricci, A., Denti, E., and Piunti, M. (2010a).

A platform for developing SOA/WS applications as open and heterogeneous

multi-agent systems.

Multiagent and Grid Systems International Journal (MAGS), Special Issue

about “Agents, Web Services and Ontologies: Integrated Methodologies”.

To Appear.

Ricci, A., Omicini, A., Viroli, M., Gardelli, L., and Oliva, E. (2007a).

Cognitive stigmergy: Towards a framework based on agents and artifacts.

In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for

MultiAgent Systems III, volume 4389 of LNAI, pages 124–140. Springer.

274 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XIX

Ricci, A., Piunti, M., Acay, L. D., Bordini, R., Hübner, J., and Dastani, M.

(2008).

Integrating artifact-based environments with heterogeneous agent-programming

platforms.

In Proceedings of 7th International Conference on Agents and Multi Agents

Systems (AAMAS08).

Ricci, A., Piunti, M., and Viroli, M. (2009a).

Externalisation and internalization: A new perspective on agent modularisation

in multi-agent system programming.

In Dastani, M., Fallah-Seghrouchni, A. E., Leite, J., and Torroni, P., editors,

LADS, volume 6039 of Lecture Notes in Computer Science, pages 35–54.

Springer.

Ricci, A., Piunti, M., and Viroli, M. (2010b).

Environment programming in multi-agent systems – an artifact-based

perspective.

Autonomous Agents and Multi-Agent Systems.

Published Online with ISSN 1573-7454 (will appear with ISSN 1387-2532).

275 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XX

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009b).

Environment programming in CArtAgO.

In Bordini, R. H., Dastani, M., Dix, J., and El Fallah-Seghrouchni, A., editors,

Multi-Agent Programming: Languages, Platforms and Applications, Vol. 2,

pages 259–288. Springer Berlin / Heidelberg.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009c).

Environment programming in CArtAgO.

In Multi-Agent Programming: Languages,Platforms and Applications,Vol.2.

Springer.

Ricci, A., Santi, A., and Piunti, M. (2010c).

Action and perception in multi-agent programming languages: From exogenous

to endogenous environments.

In In Proceedings of International Workshop on Programming Multi-Agent

Systems (ProMAS-8).

276 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XXI

Ricci, A., Viroli, M., and Omicini, A. (2007b).

The A&A programming model & technology for developing agent environments

in MAS.

In Dastani, M., El Fallah Seghrouchni, A., Ricci, A., and Winikoff, M., editors,

Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–109.

Springer Berlin / Heidelberg.

Ricci, A., Viroli, M., and Omicini, A. (2007c).

CArtAgO: A framework for prototyping artifact-based environments in MAS.

In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for

MultiAgent Systems III, volume 4389 of LNAI, pages 67–86. Springer.

3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006.

Selected Revised and Invited Papers.

Ricordel, P. and Demazeau, Y. (2002).

VOLCANO: a vowels-oriented multi-agent platform.

In Dunin-Keplicz and Nawarecki, editors, Proceedings of the International

Conference of Central Eastern Europe on Multi-Agent Systems (CEEMAS’01),

volume 2296 of LNAI, pages 252–262. Springer Verlag.

277 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XXII

Russell, S. and Norvig, P. (2003).

Artificial Intelligence, A Modern Approach (2nd ed.).

Prentice Hall.

Searle, J. R. (1997).

The Construction of Social Reality.

Free Press.

Shoham, Y. (1993).

Agent-oriented programming.

Artif. Intell., 60(1):51–92.

Stratulat, T., Ferber, J., and Tranier, J. (2009).

MASQ: towards an integral approach to interaction.

In AAMAS (2), pages 813–820.

Tambe, M. (1997).

Towards flexible teamwork.

Journal of Artificial Intelligence Reseearch, 7:83–124.

278 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XXIII

Tinnemeier, N., Dastani, M., Meyer, J.-J., and van der Torre, L. (2009).

Programming normative artifacts with declarative obligations and prohibitions.

In IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology (WI-IAT 2009).

Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., and Zambonelli, F. (2007).

Infrastructures for the environment of multiagent systems.

Autonomous Agents and Multi-Agent Systems, 14(1):49–60.

Weyns, D. and Holvoet, T. (2004).

A formal model for situated multi-agent systems.

Fundamenta Informaticae, 63(2-3):125–158.

Weyns, D. and Holvoet, T. (2007).

A reference architecture for situated multiagent systems.

In Environments for Multiagent Systems III, volume 4389 of LNCS, pages

1–40. Springer Berlin / Heidelberg.

Weyns, D., Omicini, A., and Odell, J. J. (2007).

Environment as a first-class abstraction in multi-agent systems.

Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

279 / 280



Introduction AOP EOP OOP Conclusion

Bibliography XXIV

Weyns, D. and Parunak, H. V. D., editors (2007).

Special Issue on Environments for Multi-Agent Systems, volume 14 (1) of

Autonomous Agents and Multi-Agent Systems. Springer Netherlands.

Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J. (2005).

Environments for multiagent systems: State-of-the-art and research challenges.

In Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J.,

editors, Environment for Multi-Agent Systems, volume 3374, pages 1–47.

Springer Berlin / Heidelberg.

Winikoff, M. (2005).

Jack intelligent agents: An industrial strength platform.

In [Bordini et al., 2005a], pages 175–193.

Wooldridge, M. (2002).

An Introduction to Multi-Agent Systems.

John Wiley & Sons, Ltd.

280 / 280


	Introduction
	AOP: Agent Oriented Programming
	About AOP
	Jason
	2APL: A Practical Agent Programming Language

	Environment Programming
	Why Environment Programming in MAS
	Basic Support
	Advanced Support
	A&A and CArtAgO
	Conclusions and Wrap-up

	Organisation Oriented Programming (OOP)
	Motivations and Fundamentals
	Some OOP approaches
	Focus on the Moise framework
	2OPL: Organisation Oriented Programming Language

	Conclusion

